首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sodium silyl chalcogenolates NaESiR(t)Bu(2) (R = Ph, (t)Bu; E = S, Se, Te), accessible by the nucleophilic degradation of S, Se, or Te by the sodium silanides NaSiR(t)Bu(2) (R = Ph, (t)Bu), have been characterized by X-ray structure analysis. Protonolysis of the sodium silyl chalcogenolates yields the corresponding chalcogenols. The Cu and Zn chalcogenolates, [Cu(SSiPh(t)Bu(2))](4) and [ZnCl(SSi(t)Bu(3))(THF)](2), have been synthesized by metathesis reactions of CuCl with NaSSiPh(t)Bu(2) and of ZnCl(2) with NaSSi(t)Bu(3), respectively. The solid-state structures of the transition metal thiolates have been determined. The compounds (t)Bu(2)RSiE-ESiR(t)Bu(2) (R = Ph, (t)Bu; E = S, Se, Te) are accessible via air oxidation. With the exception of (t)Bu(3)SiS-SSi(t)Bu(3), these compounds were analyzed using X-ray crystallography and represent the first structurally characterized silylated heavy dichalcogenides. Oxidative addition of (t)Bu(3)SiTe-TeSi(t)Bu(3) to Fe(CO)(5) yields [Fe(TeSi(t)Bu(3))(CO)(3)](2), which has also been structurally characterized.  相似文献   

2.
The electronic structure of the molecules of chalcogen dichlorides ECl2 (E = S, Se, Te) was investigated by X-ray spectroscopy and quantum-chemical calculations in the X(SW) approximation. The sequence of the energy levels in the ECl2 molecules was determined. The nature of the bonding in the various orbitals of the molecules in the SCl2SeCl2TeCl2 series was established. The reasons for the reduced chemical stability of the SeCl2 molecule and the nonexistence of the TeCl2 molecule in the individual state are indicated.  相似文献   

3.
Investigation of the State Diagrams of the Systems Ag2Se0.5Te0.5? Ag2S and Ag2S0.5Te0.5? Ag2Se The Systems Ag2Se0.5Te0.5? Ag2S and Ag2S0.5Te0.5? Ag2Se were investigated by the methods of DTA, X-ray and microstructure analysis and measuring of the conductivity. It was found, that the systems are polythermic sections of the ternary diagram Ag2Te? Ag2Se? Ag2S. In all regions from 0 till 100 Mol.-% Ag2S, resp. Ag2Se, except the phases with composition Ag2Se0.5Te0.5 and Ag2S0.5Te0.5 mixed crystals are formed. The structure of the observed interphases was not investigated. The state diagrams of the systems Ag2Se0.5Te0.5 ?Ag2S and Ag2S0.5Te0.5? Ag2Se are characterized with peritectical destruction at 140°C for the first and eutectical destructions at 70°C for both systems. In the systems Ag2Se0.5Te0.5? Ag2S a peritectical reaction at 780°C is observed.  相似文献   

4.
Reactions of ClMe2Si–Z–SiMe2Cl (Z = SiMe2 (1a), CH2 (1c), O (1e)) with Li2E (E = S, Se) yielded eight-membered ring compounds (SiMe2ZSiMe2E)2 (3ad) as well as acyclic oligomers (SiMe2ZSiMe2E)x of different chain lengths. If 1:1 molar mixtures of 1a, 1c or 1e and a diorganodichlorosilane, -germane or -stannane (R2MCl2) are reacted with Li2E (E = S, Se, Te), six-membered ring compounds Z(SiMe2E)2MR2 (4a7g) are formed exclusively. Five-membered rings Z2(SiMe2)2E (Z = SiMe2 (8ac), CH2 (9ac); E = S, Se, Te) are obtained starting from the tetrasilane ClMe2Si–(SiMe2)2–SiMe2Cl (1b) or the disilylethane ClMe2Si–(CH2)2–SiMe2Cl (1d) by treatment with Li2E. All products were characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 119Sn, 77Se, 125Te, including coupling constants) and the effects of the different ring sizes towards NMR chemical shifts are discussed.  相似文献   

5.
In comparison with other chalcogenide glassy systems, less attention has been paid to the quasi-ternary (quaternary) system As2(S, Se, Te)3. In this paper, thermal methods were used to characterize ten different quaternary homogenous semiconductor glasses that were prepared by mixing the stoichiometric binary systems As2S3, As2Se3 and As2Te3. The ratios of the constituent binaries in the quasi-ternary glasses exerted a great influence on their thermal spectrum. The samples poor in As2Te3 showed neither the exothermic nor the endothermic peak due to crystallízation (T c) and melting (T m), respectively, but only the glass transition (T g). Three transition temperatures,T g, Tc andT m, were detected for other compositions. On the other hand, a phase separation was observed in the samples rich in As2Te3. A cyclic scanning technique was used to investigate the thermally-induced phases during two consecutive heat ing-cooling cycles covering the temperature rangeT g?Tm. The energy of decompositionE d decreased on increase of the ratio As2S3/As2Se3 (at constant As2Te3), whereas it increased on increase of the ratio As2Te3/As2Se3 (at constant As2Se3 or As2S3).  相似文献   

6.
Synthesis of mesoporous materials has become more and more important due to their wide application. Nowadays, there are two main ideas in their preparation. One is focused on the templating method. The other is based on metal-organic frameworks (MOFs) constructed from molecular building blocks. Herein, we exploit a new idea for their facile and general synthesis, namely, using "artificial atoms" (monodisperse nanoparticles) as uniform building blocks to construct ordered mesoporous materials. Mesoporous Ag, Ag2S, and Ag2Se have been obtained to demonstrate this concept. On the other hand, we also describe a facile method to prepare the "building blocks". Ag nanoparticles were obtained by direct thermal decomposition of AgNO3 in octadecylamine, and Ag2S/Ag2Se nanoparticles were synthesized by reaction between sulfur or selenium powder and Ag nanoparticles formed in situ. This approach for Ag, Ag2S, and Ag2Se nanoparticles is efficient, economical, and easy to scale up in industrial production.  相似文献   

7.
8.
A synthetic, spectroscopic, and theoretical study of Ex(CN)2 (E = S, Se; x = 1-3) is described. The X-ray structures of Se2(CN)2 and Se3(CN)2 have been determined. Se2(CN)2 crystallizes in a chiral space group with the CN groups approximately gauche.  相似文献   

9.
The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR2)2 where NR2 = N(SiMe3)2 with n HOR led to the isolation of the following: n = 1 [Cd(mu-OCH2CMe3)(NR2)(py)]2 (1, py = pyridine), Cd[(mu-OC6H3(Me)(2)-2,6)2Cd(NR2)(py)]2 (2), [Cd(mu-OC6H3(CHMe2)(2)-2,6)(NR2)(py)]2 (3), [Cd(mu-OC6H3(CMe3)(2)-2,6)(NR2)(py)]2 (4), [Cd(mu-OC6H2(NH2)(3)-2,4,6)(NR2)(py)]2 (5), and n = 2 [Cd(mu-OC6H3(Me)(2)-2,6)(OC6H3(Me)(2)-2,6)(py)2]2 (6), and [Cd(mu-OC6H3(CMe3)(2)-2,6)(OC6H3(CMe3)(2)-2,6)(THF)]2 (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR2 or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four mu-OR and two terminal -NR2 ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by 1H, 13C, and 113Cd NMR along with solid-state 113Cd NMR spectroscopy. The utility of these complexes as "alternative precursors" for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize the resultant particles.  相似文献   

10.
Shieh M  Chung RL  Yu CH  Hsu MH  Ho CH  Peng SM  Liu YH 《Inorganic chemistry》2003,42(18):5477-5479
The rare examples of electron-rich mixed-metal carbonyl telluride and selenide clusters [E(2)Cr(2)Fe(CO)(10)](2-) (E = Te, Se) have been demonstrated. These two novel carbonyl complexes exhibit the unusual paramagnetic behavior.  相似文献   

11.
Molybdenum chalcogenobenzimidates of formula (Ph[PhE]C=N)Mo(N[t-Bu]Ar)(3) (Ar = 3,5-C(6)H(3)Me(2)) have been obtained by treatment of Mo(N[t-Bu]Ar)(3) sequentially with benzonitrile and 0.5 equiv of PhEEPh (E = S, Se, and Te). Molecular structure determinations have been carried out for the S and Se variants. The Te variant extrudes PhCN forming structurally characterized (PhTe)Mo(N[t-Bu]Ar)(3) with facility assessed via stopped-flow kinetic measurements, while the Se and S analogues exhibit increasing stability. Quantum chemical calculations and solution calorimetry have been employed as an aid to interpretation of the PhCN extrusion reaction.  相似文献   

12.
An attempt is made to correlate the crystal structures of ternary chalcogenides of composition AB2X4 with the cationic radius ratio and a pseudo force-constant involving their electronegativities. The resultant diagram adequately resolves structures based on the types K2SO4, monoclinic, olivine, MnY2S4, Th3P4, and CaFe2O4 but structure types based on spinel, Cr3Se4, and Ag2HgI4 are not resolved. Crystal chemical arguments are used to explain these observations and to advance reasons for the successes and failures of this method for predicting structure types.  相似文献   

13.
Crystalline coordination complexes of Sm(EPh)2 (E = Se, Te) are described. The selenolate compound Sm(SePh)2 is unstable in solution, but a divalent selenolate can be prepared and isolated when precisely 1 equiv of Zn(SePh)2 is present to form heterometallic [(THF)3Sm(mu 2-SePh)3Zn(mu 2-SePh)]n (1). This compound is a 1D coordination polymer with alternating Sm(II) and Zn(II) ions connected by an alternating (1,3) number of bridging selenolate ligands and three THF ligands bound to each Sm(II) ion. The tellurolate Sm(TePh)2 forms a stable pyridine coordination compound (py)5Sm(TePh)2 (2) that is isostructural with known Eu and Yb benzenetellurolates. Both compounds were characterized by conventional spectroscopic methods. Polymer 1 was characterized by low-temperature single-crystal X-ray diffraction, and the unit cell of the tellurolate was determined. Crystal data (Mo K alpha, 153(5) (K) are as follows. 1: monoclinic space group P21, a = 10.666(2) A, b = 16.270(3) A, c = 12.002(3) A, beta = 114.81(2) degrees, Z = 2.2: orthorhombic space group Pbca, with a = 13.865(3) A, b = 16.453(5) A, c = 31.952(7) A, Z = 8.  相似文献   

14.
A facile method to control the synthesis and self‐assembly of monodisperse Ag and Ag2S nanocrystals with a narrow‐size distribution is described. Uniform Ag nanoparticles of less than 4 nm were obtained by thermolysis of Ag–oleate complexes in the presence of oleic acid and dodecylamine, and monodisperse Ag nanoparticles of less than 10 nm were also prepared in one step by using dodecylamine and oleic acid as capping agents. Moreover, the surface‐enhanced Raman scattering (SERS) properties of the Ag substrates have also been investigated. It is worth mentioning that these Ag nanoparticles and assemblies show great differences in the SERS activities of Rhodamine B dye. In addition, the superlattices of Ag2S nanocrystals were synthesized with Ag–oleate complexes, alkanethiol, and sulfur as the reactants. The resulting highly monodisperse nanocrystals can easily self‐assemble into interesting superstructures in the solution phase without any additional assembly steps. This method may be extended to the size‐controlled preparation and assembly of many other noble‐metal and transition‐metal chalcogenide nanoparticles. These results will aid the study of the physicochemical properties of the superlattice assemblies and construction of functional macroscopic architectures or devices.  相似文献   

15.
The reaction of ((i)Pr 2PE) 2NM.TMEDA (M = Li, E = Se; M = Na, E = Te) with NiBr 2.DME in THF affords Ni[(SeP (i)Pr 2) 2N] 2 as either square-planar (green) or tetrahedral (red) stereoisomers, depending on the recrystallization solvent; the Te analogue is obtained as the square-planar complex Ni[(TeP (i)Pr 2) 2N] 2.  相似文献   

16.
Previously unknown 1-(methylselenomethyl)-and 1-(phenyltelluromethyl)silatrane, bis(silatranylmethyl) selenide, bis(silatranylmethyl) telluride, bis(silatranylmethyl) diselenide, and dimethyl(triethoxysilylmethyl)telluronium, phenyl(silatranylmethyl)telluronium, methylbis(silatranylmethyl)selenonium, methylbis(silatranylmethyl)telluronium, and tris(silatranylmethyl)selenonium iodides were synthesized. The NMR spectra of these compounds, as well as of isostructural (methylchalcogenomethyl)triethoxysilanes, 1-(methylchalcogenomethyl)silatranes, the corresponding methylchalcogenonium iodides, methylorganyl(silatranylmethyl)chalcogenonium iodides, bis(trialkoxysilylmethyl) chalcogenides, and bis(silatranylmethyl) chalcogenides, in CDCl3, CD3OH, CD3CN, and DMSO-d 6 were studied.  相似文献   

17.
A series of N‐heterocyclic carbene‐stabilized silanechalcogenones 2 a , b (Si?O), 3 a , b (Si?S), 4 a , b (Si?Se), and 5 a , b (Si?Te) are described. The silanone complexes 2 a , b were prepared by facile oxygenation of the carbene–silylene adducts 1 a , b with N2O, whereas their heavier congeners were synthesized by gentle chalcogenation of 1 a , b with equimolar amounts of elemental sulfur, selenium, and tellurium, respectively. These novel compounds have been isolated in a crystalline form in high yields and have been fully characterized by a variety of techniques including IR spectroscopy, ESIMS, and multinuclear NMR spectroscopy. The structures of 2 b , 3 a , 4 a , 4 b , and 5 b have been confirmed by single‐crystal X‐ray crystallography. Due to the NHC→Si donor–acceptor electronic interaction, the Si?E (E=O, S, Se, Te) moieties within these compounds are well stabilized and thus the compounds possess several ylide‐like resonance structures. Nevertheless, these species also exhibit considerable Si?E double‐bond character, presumably through a nonclassical Si?E π‐bonding interaction between the chalcogen lone‐pair electrons and two antibonding Si? N σ* orbitals, as evidenced by their high stretching vibration modes and the shortening of the Si–E distances (between 5.4 and 6.3 %) compared with the corresponding Si? E single‐bond lengths.  相似文献   

18.
Two intramolecular stabilized arylaluminum dihydrides, (2-(NEt2CH2)-6-MeC6H3)AlH2 (1) and (2,6-(NEt2CH2)2C6H3)AlH2 (2), were prepared by reducing the corresponding dichlorides with an excess of LiAlH4 in diethyl ether. Reactions of 1 and 2 with elemental selenium afforded the dimeric arylaluminum selenides [(2-(NEt2CH2)-6-MeC6H3)AlSe]2 (3) and [(2,6-(NEt2CH2)2C6H3)AlSe]2 (4). Reaction of 2 with metallic tellurium gave the dimeric arylaluminum telluride [(2,6-(NEt2CH2)2C6H3)AlTe]2 (5). The possible reaction pathway is discussed, and molecular structures determined by single-crystal X-ray analyses are presented for 3 and 5.  相似文献   

19.
A series of lanthanide complexes containing a chalcogenolate ligand supported by two TpMe,Me (tris-3,5-dimethylpyrazolylborate) groups has been prepared and crystallized and provides direct comparisons of bonding to hard and soft ligands at lanthanide centers. Reaction of [Sm(TpMe,Me)2Cl] with NaOR (R = Ph, Ph-Bu(t)) gives [Sm(TpMe,Me)2OR] (1a and 1b, respectively) in good yields. Reductive cleavage of dichalcogenides by samarium(II) was used to prepare the heavier congeners. Complexes of the type [Sm(TpMe,Me)2ER] for E = S, R = Ph (2a), E = S, R = Ph-4-Me (2b), E = S, R = CH2Ph (2c), E = Se, R = Ph (3a), E = Se, R = Ph-4-Bu(t) (3b), E = Se, R = CH2Ph (3c), and E = Te, R = Ph (4) have been prepared together with the corresponding complexes with TpMe,Me,4-Et as ancillary. The X-ray crystal structures of 1b, 2b, 3a, 3b, and 4 have been determined. The crystal of 1b (C40H57B2N12OSm.C7H8) was monoclinic, P2(1)/c, a = 10.6845(6) A, b = 18.5573(11) A, c = 24.4075(14) A, beta = 91.616(2) degrees, Z = 4. The crystal of 2b (C37H51B2N12SSm) was monoclinic, P2(1)/n, a = 15.0154(9) A, b = 13.1853(8) A, c = 21.1254(13) A, beta = 108.628(2) degrees, Z = 4. The crystal of 3a (C36H49B2N12SeSm.C7H8) was triclinic, P1, a = 10.7819(6) A, b = 19.3011(10) A, c = 23.0235(12) A, alpha = 79.443(2) degrees, beta = 77.428(2) degrees, gamma = 89.827(2) degrees, Z = 4. The crystal of 3b (C40H57B2N12SeSm) was triclinic, P1, a = 10.1801(6) A, b = 10.2622(6) A, c = 23.4367(14) A, alpha = 88.313(2) degrees, beta = 86.268(2) degrees, gamma = 62.503(2) degrees, Z = 2. The crystal of 4 (C36H49B2N12TeSm.C7H8) was monoclinic, P2(1)/c, a = 18.7440(10) A, b = 10.3892(6) A, c = 23.8351(13) A, beta = 94.854(2) degrees, Z = 4. The compounds form an isoleptic series of seven-coordinate complexes with terminal chalcogenolate ligands. Examination of 1b and other crystallographically characterized lanthanide alkoxides suggests that there is little correlation between bond angle and bond length. The structures of 3a and 3b, however, contain molecules in which one of the pyrazolylborate ligands undergoes a major distortion arising from twisting around a B-N bond so as to give an effectively eight-coordinate complex with pi-stacking of the phenyl group with one pyrazolyl ring. These distortions shed light on the fluxionality of these systems.  相似文献   

20.
Group 14 and 16 hybrid heavy bicyclo[1.1.0]butanes (tBu2MeSi)4Si3E (E = S, Se, and Te) 2a-c have been prepared by the [1 + 2] cycloaddition reaction of trisilirene 1 and the corresponding chalcogen. Bicyclo[1.1.0]butanes 2 have exceedingly short bridging Si-Si bonds (2.2616(19) A for 2b and 2.2771(13) A for 2c), a phenomenon explained by the important contribution of the trisilirene-chalcogen pi-complex character to the overall bonding of 2. Photolysis of 2a and 2b produced their valence isomers, the heavy cyclobutenes 3a and 3b, featuring flat four-membered Si3E rings and a planar geometry of the Si=Si double bond. The mechanism of such isomerization was studied using deuterium-labeled 2a-d6 to ascertain the preference of the pathway, involving the direct concerted symmetry-allowed transformation of bicyclo[1.1.0]butane 2 to cyclobutene 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号