首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of a two-dimensional steady flow of a second-grade fluid in a converging porous channel is considered. It is assumed that the fluid is injected into the channel through one wall and sucked from the channel through the other wall at the same velocity, which is inversely proportional to the distance along the wall from the channel origin. The equations governing the flow are reduced to ordinary differential equations. The boundary-value problem described by the latter equations is solved by the homotopy perturbation method. The effects of the Reynolds and crossflow Reynolds number on the flow characteristics are examined.  相似文献   

2.
Unsteady flow and heat transfer from a horizontal isothermal square cylinder is studied numerically using a three-dimensional computational model to investigate the influence of buoyancy on the forced flow and heat transfer characteristics. The numerical model is based on a horizontal square cylinder subjected to laminar fluid flow in an unconfined channel. The governing equations in 3D form are solved using a fractional step method based on the finite difference discretization in addition to a Crank–Nicholson scheme employed to the convective and the viscous terms. Two working fluids–air (Pr = 0.7) and water (Pr = 7)–are considered, and the flow and heat transfer simulations were carried out for the Reynolds and Richardson numbers in the intervals 55 ≤ Re ≤ 250 and 0 ≤ Ri ≤ 2, respectively. The flow characteristics such as time-averaged drag/lift, rms drag/rms lift coefficients as well as Strouhal number were computed. The heat transfer from the cylinder is assessed by mean Nusselt number (and rms Nusselt number) over the total heated cylinder walls. As the buoyancy increases, the mass and the velocity of the fluid flowing underneath the cylinder increases. The fluid is injected into the near wake region with an upward motion which significantly alters the flow field in the downstream as well as upstream regions. The effects of Reynolds, Richardson and Prandtl numbers on the flow field and temperature distributions are discussed in detail. It is shown that the flow and heat transfer characteristics are influenced more for air than water. To fill the void in the literature, useful empirical correlations of practical importance are derived for pure forced and pure natural as well as mixed convection. The mixed convection correlations, in terms of the ratio of pure forced convection, are also developed, and their implications are discussed.  相似文献   

3.
In magnetohydrodynamic flow the viscous friction at the walls can be substantial. The role of viscous friction can be considerably reduced by using a free or a semirestricted flow of the conducting fluid. Nonstationary phenomena in one-dimensional motion of a free plane incompressible fluid flow in a transverse magnetic field are examined. The narrow sides of the flow come into contact with the sectional electrodes connected through external circuits with an active-inductive load. The magnetic Reynolds number and the magnetody-dynamic interaction parameter are assumed to be large. When the electric field due to electromagnetic induction in the channel is much smaller than the field due to the external circuits, the problem can be reduced to the characteristic Cauchy problem for a quasilinear hyperbolic system of first-order equations which can be solved by the method of characteristics using a computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 34–39, July–August, 1970.  相似文献   

4.
A finite difference solution for laminar viscous flow through a sinusoidally curved converging-diverging channel is presented. The physical wavy domain is transformed into a rectangular computational domain in order to simplify the application of boundary conditions on the channel walls. The discretized conservation equations for mass, momentum and energy are derived on a control volume basis. The pseudo-diffusive terms that arise from the co-ordinate transformation are treated as source terms, and the resulting system of equations is solved by a semi-implicit procedure based on line relaxation. Results are obtained for both the developing and the fully developed flow for a Prandtl number of 0.72, channel maximum width-to-pitch ratio of 1.0, Reynolds number ranging from 100 to 500 and wall amplitude-to-pitch ratio varying from 0.1 to 0.25. Results are presented here for constant fluid properties and for a prescribed wall enthalpy only.  相似文献   

5.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The structure of confined wakes behind a square cylinder in a channel is investigated via the numerical solution of the unsteady Navier–Stokes equations. Vortex shedding behind the cylinder induces periodicity in the flow field. Details of the phenomenon are simulated through numerical flow visualization. The unsteady periodic wake can be characterized by the Strouhal number, which varies with the Reynolds number and the blockage ratio of the channel. The periodicity of the flow is, however, damped in the downstream region of a long duct. This damping may be attributed to the influence of side walls on the flow structure.  相似文献   

7.
Experimentally observed self-oscillations of a cylinder in a plane channel whose width is slightly greater than the cylinder diameter under the impact of the incoming fluid flow are modeled. Within the model of a nonseparated potential flow around the cylinder, the coefficients of added mass of the cylinder are calculated with the help of the generalized method of images. When the cylinder touches the channel wall, the circulation sign changes, and its value is determined by the boundary element method and the no-slip condition for the fluid at the contact point. The Joukowski force and the drag force proportional to the square of velocity are taken into account in the equations of motion of cylinder.  相似文献   

8.
The equations governing the flow of a viscous fluid in a two‐dimensional channel with weakly modulated walls have been solved using a perturbation approach, coupled to a variable‐step finite‐difference scheme. The solution is assumed to be a superposition of a mean and perturbed field. The perturbation results were compared to similar results from a classical finite‐volume approach to quantify the error. The influence of the wall geometry and flow Reynolds number have extensively been investigated. It was found that an explicit relation exists between the critical Reynolds number, at which the wall flow separates, and the dimensionless amplitude and wavelength of the wall modulation. Comparison of the flow shows that the perturbation method requires much less computational effort without sacrificing accuracy. The differences in predicted flow is kept well around the order of the square of the dimensionless amplitude, the order to which the regular perturbation expansion of the flow variables is carried out. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In relation to microrheology of blood, a theoretical approach to the motion of a red blood cell in a plane Couette flow between two parallel plates is made with emphasis on effects of wall. The red blood cell is assumed to be an elliptic cylindrical particle with a thin, inextensible membrane moving like a tank-tread along its perimeter and to contain a Newtonian fluid inside. Fluid motions are analysed numerically both inside and outside the particle on the basis of the Stokes equations, using the finite element method.A quasi-static equilibrium condition leads to the solution for the motion of the particle. It is shown that two types of motion exist (a stationary orientation motion and a flipping motion), depending on the viscosity ratio of inner to outer fluid, the axis ratio of the elliptic cylinder and the ratio of particle size to channel width. The results are applied to capillary blood flow.  相似文献   

10.
This paper investigates the boundary layer flow of the Maxwell fluid around a stretchable horizontal rotating cylinder under the influence of a transverse magnetic field. The constitutive flow equations for the current physical problem are modeled and analyzed for the first time in the literature. The torsional motion of the cylinder is considered with the constant azimuthal velocity E. The partial differential equations (PDEs) governing the torsional motion of the Maxwell fluid together with energy transport are simplified with the boundary layer concept. The current analysis is valid only for a certain range of the positive Reynolds numbers. However, for very large Reynolds numbers, the flow becomes turbulent. Thus, the governing similarity equations are simplified through suitable transformations for the analysis of the large Reynolds numbers. The numerical simulations for the flow, heat, and mass transport phenomena are carried out in view of the bvp4c scheme in MATLAB. The outcomes reveal that the velocity decays exponentially faster and reduces for higher values of the Reynolds numbers and the flow penetrates shallower into the free stream fluid. It is also noted that the phenomenon of stress relaxation, described by the Deborah number, causes to decline the flow fields and enhance the thermal and solutal energy transport during the fluid motion. The penetration depth decreases for the transport of heat and mass in the fluid with the higher Reynolds numbers. An excellent validation of the numerical results is assured through tabular data with the existing literature.  相似文献   

11.
In this paper, we investigate the peristaltic transport of a couple stress fluid in a channel with compliant walls. Perturbation method has been used to get the solution. The flow is induced by sinusoidal traveling waves along the channel walls. The effects of wall damping, wall elastance, wall tension and couple stress parameter on the flow are investigated using the equations of fluid as well as deformable boundaries. It is found that the mean velocity at boundaries decreases with increasing couple-stress parameter and wall damping and increases with increasing wall tension and wall elastance, while the mean axial velocity increases with increasing wall tension and wall elastance and decreases with couple-stress parameter and wall damping.  相似文献   

12.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

13.
Important results of a numerical study performed on combined conduction–mixed convection–surface radiation from a vertical channel equipped with three identical flush-mounted discrete heat sources in its left wall are provided here. The channel has walls of identical height with the spacing varied by varying its aspect ratio (AR). The cooling medium is air that is considered to be radiatively transparent. The heat generated in the channel gets conducted along its walls before getting dissipated by mixed convection and radiation. The governing equations for fluid flow and heat transfer are considered without boundary layer approximations and are transformed into vorticity–stream function form and are later normalized. The resulting equations are solved, along with relevant boundary conditions, making use of the finite volume method. The computer code written for the purpose is validated both for fluid flow and heat transfer results with those available in the literature. Detailed parametric studies have been performed and the effects of modified Richardson number, surface emissivity, thermal conductivity and AR on various pertinent results have been looked into. The significance of radiation in various regimes of mixed convection has been elucidated. The relative contributions of mixed convection and radiation in carrying the mandated cooling load have been thoroughly explored.  相似文献   

14.
We numerically simulate the flow field of a dilute polymeric solution using a finitely extendable nonlinear elastic (FENE) dumbbell model. A third-order accurate finite element upwind scheme is used to discretize the convection term in the FENE dumbbell equations for the configuration tensor. The numerical scheme also avoids unphysical negative values for diagonal components of the configuration tensor. The FENE dumbbell equations are solved along with the momentum and continuity equations at small Reynolds numbers with an accuracy of second order in time. In this work we apply this numerical technique to the motion of a viscoelastic fluid in an eccentric rotating cylinder geometry. We obtain the velocity and the polymer contribution to the stress fields as a function of time, and also examine the steady solutions. A particular focus is the influence of coupling between changes in polymer conformation and changes in the flow that occurs as the polymer concentration is increased to a level where the polymer contribution to the zero-shear viscosity of the solution is equal to that of the solvent.This research was supported under grants from the National Science Foundation and the San Diego Supercomputer Center.  相似文献   

15.
An analysis has been carried out to study the effect of magnetic field on an electrically conducting fluid of second grade in a parallel channel. The coolant fluid is injected into the porous channel through one side of the channel wall into the other heated impermeable wall. The combined effect of inertia, viscous, viscoelastic and magnetic forces are studied. The basic equations governing the flow and heat transfer are reduced to a set of ordinary differential equations by using appropriate transformations for velocity and temperature. Numerical solutions of these equations are obtained with the help of Runge-Kutta fourth order method in association with quasi-linear shooting technique. Numerical results for velocity field, temperature field, skin friction and Nusselt number are presented in terms of elastic parameter, Hartmann number, Prandtl number and Reynolds number. Special case of our results is in good agreement with earlier published work.  相似文献   

16.
Results of a numerical-theoretical study of a developed turbulent flow of an incompressible fluid in a plane channel with simultaneous injection of mass through one porous wall and suction of the same mass through the other are presented. The system of equations of averaged motion is closed using a turbulent-stress model. The calculated data of the mean and fluctuational characteristics are in reasonable agreement with experimental results for two values of the Reynolds number of the main flow (Re=10,400 and34,000). Al-Farabi Kazakh National State University, Almaty 480121. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 1, pp. 61–68, January–February, 1998.  相似文献   

17.
Here an attempt has been made to investigate the magnetohydrodynamic (MHD) flow of a non-Newtonian fluid filling the porous space in a channel with compliant walls. Constitutive equations of a Jeffery fluid are used in the mathematical modeling. The flow is created due to sinusoidal traveling waves on the channel walls. The resulting problem is solved analytically and series solution for a stream function is derived. The effects of pertinent flow parameters are discussed through graphs.  相似文献   

18.
Summary The modification of an axi-symmetric viscous flow due to a relative rotation of a disk or fluid by a translation of the boundary are studied. The fluid is taken to be compressible and electrically conducting. The equations governing the motion are solved iteratively through a central-difference scheme. The effect of an axial magnetic field and disk temperature on the flow and heat transfer are included in the present analysis. The translation of the disk or fluid generates a velocity field at each plane parallel to the disk (secondary flow). The cartesian components of the velocity due to the secondary flow are oscillatory in nature when a rigid body rotation of the free stream along with a translation of the disk is considered. The magnetic field damps out the velocity field, and reduces the thickness of the boundary layer. The cross component of wall shear due to secondary flow acts in a direction opposite to the rotation of the disk or fluid for all cases of the motion. The rise in disk temperature produces an increment in the magnitude of the wall shear associated with the secondary flow.  相似文献   

19.
This study is to simulate the turbulent flow field and heat transfer when cold fluid flows through a finite-length circular channel, which meantime undergoes a reciprocating motion using a numerical method. The mass, momentum and energy conservation equations and turbulent k- equations are derived for a turbulent flow field in a reciprocating coordinate by a coordinate transformation from the stationary coordinate system. The SIMPLE-C scheme is used to investigate heat transfer in a cooling channel undergoing a reciprocating motion by changing parameters and cooling mediums. The parameters are Reynolds number (7170 to 20000) and Pulsating number (1.55 to 4.65). The results show that the averaged Nusselt number increase with increasing both Reynolds number and Pulsating number, and the averaged Nusselt number of cooling oil is lower than that of water at the same incoming flow rate for both the stationary and reciprocating channel.  相似文献   

20.
In order to understand the hydrodynamic interactions that can appear in a fluid particle motion, an original method based on the equations governing the motion of two immiscible fluids has been developed. These momentum equations are solved for both the fluid and solid phases. The solid phase is assumed to be a fluid phase with physical properties, such as its behaviour can be assimilated to that of pseudo‐rigid particles. The only unknowns are the velocity and the pressure defined in both phases. The unsteady two‐dimensional momentum equations are solved by using a staggered finite volume formulation and a projection method. The transport of each particle is solved by using a second‐order explicit scheme. The physical model and the numerical method are presented, and the method is validated through experimental measurements and numerical results concerning the flow around a circular cylinder. Good agreement is observed in most cases. The method is then applied to study the trajectory of one settling particle initially off‐centred between two parallel walls and the corresponding wake effects. Different particle trajectories related to particulate Reynolds numbers are presented and commented. A two‐body interaction problem is investigated too. This method allows the simulation of the transport of particles in a dilute suspension in reasonable time. One of the important features of this method is the computational cost that scales linearly with the number of particles. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号