首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review the current views on the control and coordination of movements following the traditions set by Nikolai Bernstein. In particular, we focus on the theory of neural control of effectors - from motor units to individual muscles, to joints, limbs, and to the whole body - with spatial referent coordinates organized into a hierarchy with multiple few-to-many mappings. Further, we discuss synergies ensuring stability of natural human movements within the uncontrolled manifold hypothesis. Synergies are organized within the neural control hierarchy based on the principle of motor abundance. Movement disorders are discussed as consequences of an inability to use the whole range of changes in referent coordinates (as in spasticity) and an inability to ensure controlled stability of salient variables as reflected in indices of multi-element synergies and their adjustments in preparation to actions (as in brain disorders, including Parkinson''s disease, multiple-system atrophy, and stroke). At the end of the review, we discuss possible implications of this theoretical approach to peripheral disorders and their rehabilitations using, as an example, osteoarthritis. In particular, “joint stiffening” is viewed as a maladaptive strategy, which can compromise stability of salient variables during walking.  相似文献   

2.
The aim of this study was to investigate the isokinetic trunk and knee muscle strengths, and examine the clinical relevance of dynamic muscle strengths and gait performance in walking patients with human T-cell lymphotropic virus type 1-associated myelopathy/ tropical spastic paraparesis (HAM/TSP). Thirteen patients with HAM/TSP (8 females and 5 males, aged 38–76) and 13 sex- and age-matched healthy control subjects participated in the study. We assessed gait speed, stride length, cadence; and maximal isokinetic torque of trunk and knee extensors and flexors at 30°/s, 60°/s and 90°/s using a Biodex System 3 dynamometer. Furthermore, we calculated the isokinetic trunk extensor/flexor (E/F) and hamstrings/quadriceps (H/Q) strength ratios (parameter of the muscle strength balance about the trunk and knee joint). Compared with the age-matched controls, the patients with HAM/TSP had significantly reduced gait speed, stride length and cadence (P < 0.05). Peak torque values related to body weight (PTBW) were significantly reduced, especially for the knee flexors (P < 0.05). For the knee extensors, the PTBW values were significantly reduced at an increased angular velocity (P < 0.05). The PTBW of knee flexors was positively correlated with gait speed and cadence in the patients with HAM/TSP. The H/Q ratio but not E/F ratio was significantly decreased compared with the control. Our results indicated that the isokinetic trunk and knee muscle performance had reduced from the ambulatory stage, and suggested the deterioration in knee muscle performance to be associated with gait disturbance in walking HAM/TSP patients.  相似文献   

3.
Purpose: Generally, stroke patients can walk and stand up fluidly but fulfill the sit-to-walk (STW) task with difficulty. The purpose of this study was to investigate the relationship between movement fluidity and motor strategy in the initial contact of the STW task. Method: Thirty stroke patients and ten healthy subjects performed the STW task from a sitting position, and their movement was measured by a motion analysis system. The differences in data between patients and healthy subjects were analyzed using the Mann-Whitney U test. The relationship between fluidity index (FI) and other indices (kinetic and kinematic data in STW, functional independence measure [FIM], and Fugl-Meyer Assessment [FMA]) were analyzed using Spearman''s rank correlation coefficient. Results: The stroke patients had lower FI values than the healthy subjects and exhibited shortened step length and prolonged duration from onset to the first stance leg off. FI values correlated with trunk flexure angle at initial contact, first step length, and maximum vertical floor reaction force. The independent level of the FIM of stair climbing and walking ability and the FMA of balance also correlated with FI. Conclusion: There is a possibility that poor balance is one of the reasons why stroke patients are unable to start walking fluently from the sitting position. To perform the STW fluidly, patients must start walking before the trunk extension is fully completed. The relationship between FI and indices of physical ability, namely stair climbing and balance, may have therapeutic benefits for coaching the STW task to stroke patients.  相似文献   

4.
Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients'' functional abilities or quality of life.  相似文献   

5.
In 1976 we reported our first autopsied case with diffuse Lewy body disease (DLBD), the term of which we proposed in 1984. We also proposed the term “Lewy body disease” (LBD) in1980. Subsequently, we classified LBD into three types according to the distribution pattern of Lewy bodies: a brain stem type, a transitional type and a diffuse type. Later, we added the cerebral type. As we have proposed since 1980, LBD has recently been used as a generic term to include Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB), which was proposed in 1996 on the basis of our reports of DLBD.DLB is now known to be the second most frequent dementia following Alzheimer’s disease (AD).In this paper we introduce our studies of DLBD and LBD.  相似文献   

6.
Balance impairment is one of the biggest risk factors for falls reducing inactivity, resulting in nursing care. Therefore, balance ability is crucial to maintain the activities of independent daily living of older adults. Many tests to assess balance ability have been developed. However, few reports reveal the structure underlying results of balance performance tests comparing young and older adults. Covariance structure analysis is a tool that is used to test statistically whether factorial structure fits data. This study examined aging effects on the factorial structure underlying balance performance tests. Participants comprised 60 healthy young women aged 22 ± 3 years (young group) and 60 community-dwelling older women aged 69 ± 5 years (older group). Six balance tests: postural sway, one-leg standing, functional reach, timed up and go (TUG), gait, and the EquiTest were employed. Exploratory factor analysis revealed that three clearly interpretable factors were extracted in the young group. The first factor had high loadings on the EquiTest, and was interpreted as ‘Reactive’. The second factor had high loadings on the postural sway test, and was interpreted as ‘Static’. The third factor had high loadings on TUG and gait test, and was interpreted as ‘Dynamic’. Similarly, three interpretable factors were extracted in the older group. The first factor had high loadings on the postural sway test and the EquiTest and therefore was interpreted as ‘Static and Reactive’. The second factor, which had high loadings on the EquiTest, was interpreted as ‘Reactive’. The third factor, which had high loadings on TUG and the gait test, was interpreted as ‘Dynamic’. A covariance structure model was applied to the test data: the second-order factor was balance ability, and the first-order factors were static, dynamic and reactive factors which were assumed to be measured based on the six balance tests. Goodness-of-fit index (GFI) of the models were acceptable (young group, GFI=0.931; older group, GFI=0.923). Static, dynamic and reactive factors relating to balance ability had loadings 0.21, 0.24, and 0.76 in the young group and 0.71, 0.28, and 0.43 in the older group, respectively. It is suggested that the common factorial structure of balance abilities were static, dynamic and reactive, and that for young people reactive balance ability was characterized and explained by balance ability, whereas for older people it was static balance ability.  相似文献   

7.
Objectives: To reveal self-rated changes of health status during stay-at-home orders among older adults and to verify whether decrease in frequency of going outdoors during these orders was related to self-rated changes in health status. Method: A self-completed questionnaire for older adults was provided in 2 dayservice facilities and a nursing station. We operationally defined health status with 4 domains (motor function, oral and swallowing function, depression, and social networks) and designed the questionnaire to determine self-rated changes in health status using factor analysis. After factor analysis, regression analyses were conducted. Dependent variable was each factor score (self-rated changes of health status), and independent variable was decrease in frequency of going outdoors. Results: Approximately 80% of participants answered that their health status had “worsened” in motor function (75.0%-87.2%). Moreover, more than 70% of participants answered “worsened” in “Feeling energy” and “Getting together and speaking with friends” (72.3% and 75.7%, respectively). Regression analyses demonstrated that, after adjusting for covariates, the decrease in frequency of going outdoors was related to self-rated changes of motor function and friend network. Conclusion: During stay-at-home orders, older adults felt deterioration in their motor function, in feeling energy, and in their friend network, especially people who had decreased their frequency of going outdoors felt more deterioration in their motor function and in their friend network.  相似文献   

8.
The assessment of time irreversibility, i.e., of the lack of invariance of the statistical properties of a system under the operation of time reversal, is a topic steadily gaining attention within the research community. Irreversible dynamics have been found in many real-world systems, with alterations being connected to, for instance, pathologies in the human brain, heart and gait, or to inefficiencies in financial markets. Assessing irreversibility in time series is not an easy task, due to its many aetiologies and to the different ways it manifests in data. It is thus not surprising that several numerical methods have been proposed in the last decades, based on different principles and with different applications in mind. In this contribution we review the most important algorithmic solutions that have been proposed to test the irreversibility of time series, their underlying hypotheses, computational and practical limitations, and their comparative performance. We further provide an open-source software library that includes all tests here considered. As a final point, we show that “one size does not fit all”, as tests yield complementary, and sometimes conflicting views to the problem; and discuss some future research avenues.  相似文献   

9.
We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find “obscured” AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.  相似文献   

10.
Individuals with mild cognitive impairment (MCI) are at high risk of developing Alzheimer’s disease (AD). Repetitive photic stimulation (PS) is commonly used in routine electroencephalogram (EEG) examinations for rapid assessment of perceptual functioning. This study aimed to evaluate neural oscillatory responses and nonlinear brain dynamics under the effects of PS in patients with mild AD, moderate AD, severe AD, and MCI, as well as healthy elderly controls (HC). EEG power ratios during PS were estimated as an index of oscillatory responses. Multiscale sample entropy (MSE) was estimated as an index of brain dynamics before, during, and after PS. During PS, EEG harmonic responses were lower and MSE values were higher in the AD subgroups than in HC and MCI groups. PS-induced changes in EEG complexity were less pronounced in the AD subgroups than in HC and MCI groups. Brain dynamics revealed a “transitional change” between MCI and Mild AD. Our findings suggest a deficiency in brain adaptability in AD patients, which hinders their ability to adapt to repetitive perceptual stimulation. This study highlights the importance of combining spectral and nonlinear dynamical analysis when seeking to unravel perceptual functioning and brain adaptability in the various stages of neurodegenerative diseases.  相似文献   

11.
In theoretical biology, robustness refers to the ability of a biological system to function properly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical models is reflected in not needing to fine-tune basic parameter constants; flexibility refers to the ability of a system to switch functions or behaviors easily and effortlessly. While there are extensive explorations of the concept of robustness and what it requires mathematically, understanding flexibility has proven more elusive, as well as also elucidating the apparent opposition between what is required mathematically for models to implement either. In this paper we address a number of arguments in theoretical neuroscience showing that both robustness and flexibility can be attained by systems that poise themselves at the onset of a large number of dynamical bifurcations, or dynamical criticality, and how such poising can have a profound influence on integration of information processing and function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map lattices provide an explicit connection between dynamical criticality in the sense we have used and “edge of chaos” criticality.  相似文献   

12.
The properties of decays that take place during jet formation cannot be easily deduced from the final distribution of particles in a detector. In this work, we first simulate a system of particles with well-defined masses, decay channels, and decay probabilities. This presents the “true system” for which we want to reproduce the decay probability distributions. Assuming we only have the data that this system produces in the detector, we decided to employ an iterative method which uses a neural network as a classifier between events produced in the detector by the “true system” and some arbitrary “test system”. In the end, we compare the distributions obtained with the iterative method to the “true” distributions.  相似文献   

13.
李清都  周红伟  杨晓松 《物理学报》2012,61(4):40503-040503
被动行走机器人由于结构简单、能量利用率高而倍受青睐, 但其很容易跌倒, 因此准确把握最终步态与吸引区域成了关键. 由于面对非光滑系统, 大规模数值计算很难避免, 为此本文先提出基于CPU+GPU异构平台的Poincaré映射算法. 该算法可发挥最新平台计算潜力, 比传统CPU上算法快上百倍. 得益于此, 本文针对双足被动行走的最基本模型, 大规模地选取样点进行计算, 不仅清晰地得出吸引区域的形状轮廓和细节特征, 揭示了其内在分形结构, 还得到系统吸引集和吸引区域随倾角k的变化关系, 发现了新的稳定三周期步态和倍周期分岔混沌现象, 并研究了吸引区域.  相似文献   

14.
Background: Early mobilization and rehabilitation interventions should be provided to patients who survived severe COVID-19 to improve their physical function and activities of daily living (ADL). However, their physical and mental status at discharge has not been well described in Japan. We report the intervention provided for a survivor of severe COVID-19 and his physical and mental status at discharge from an acute care hospital. Case Report: A 62-year-old man was admitted to our emergency department with a diagnosis of COVID-19 with severe acute respiratory dysfunction. He had complicated intensive care unit-acquired weakness (ICU-AW) and delirium during mechanical ventilation therapy. Rehabilitation intervention was initiated on the seventh day post-admission and was gradually performed according to his respiratory and hemodynamic status. As a result of the rehabilitation intervention, ICU-AW and cognitive function gradually improved. On hospital day 37, he independently performed basic ADL and was discharged. However, he lost approximately 9% of his body weight at discharge. In addition, his hand grip strength and six-minute walking distance were lower and shorter than the reference values, respectively. His mental component summary of the Short Form-8™ was lower than the national standard deviation for the Japanese population. Conclusion: Although survivors of severe COVID-19 who undergo early rehabilitation can be discharged from an acute care hospital, they may have several impairments in their physical and mental status, including muscle function, diffusion capacity, exercise tolerance, and health-related quality of life.  相似文献   

15.
Recently, deep reinforcement learning (RL) algorithms have achieved significant progress in the multi-agent domain. However, training for increasingly complex tasks would be time-consuming and resource intensive. To alleviate this problem, efficient leveraging of historical experience is essential, which is under-explored in previous studies because most existing methods fail to achieve this goal in a continuously dynamic system owing to their complicated design. In this paper, we propose a method for knowledge reuse called “KnowRU”, which can be easily deployed in the majority of multi-agent reinforcement learning (MARL) algorithms without requiring complicated hand-coded design. We employ the knowledge distillation paradigm to transfer knowledge among agents to shorten the training phase for new tasks while improving the asymptotic performance of agents. To empirically demonstrate the robustness and effectiveness of KnowRU, we perform extensive experiments on state-of-the-art MARL algorithms in collaborative and competitive scenarios. The results show that KnowRU outperforms recently reported methods and not only successfully accelerates the training phase, but also improves the training performance, emphasizing the importance of the proposed knowledge reuse for MARL.  相似文献   

16.
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.  相似文献   

17.
In this paper, we have analyzed the mathematical model of various nonlinear oscillators arising in different fields of engineering. Further, approximate solutions for different variations in oscillators are studied by using feedforward neural networks (NNs) based on the backpropagated Levenberg–Marquardt algorithm (BLMA). A data set for different problem scenarios for the supervised learning of BLMA has been generated by the Runge–Kutta method of order 4 (RK-4) with the “NDSolve” package in Mathematica. The worth of the approximate solution by NN-BLMA is attained by employing the processing of testing, training, and validation of the reference data set. For each model, convergence analysis, error histograms, regression analysis, and curve fitting are considered to study the robustness and accuracy of the design scheme.  相似文献   

18.
The past three decades have seen multiple reports of people with neurodegenerative disorders, or other forms of changes in their brains, who also show putative changes in how they approach and produce visual art. Authors argue that these cases may provide a unique body of evidence, so-called ‘artistic signatures’ of neurodegenerative diseases, that might be used to understand disorders, provide diagnoses, be employed in treatment, create patterns of testable hypotheses for causative study, and also provide unique insight into the neurobiological linkages between the mind, brain, body, and the human penchant for art-making itself. However—before we can begin to meaningfully build from such emerging findings, much less formulate applications—not only is such evidence currently quite disparate and in need of systematic review, almost all case reports and artwork ratings are entirely subjective, based on authors' personal observations or a sparse collection of methods that may not best fit underlying research aims. This leads to the very real question of whether we might actually find patterns of systematic change if fit to a rigorous review—Can we really ‘read’ art to illuminate possible changes in the brain? How might we best approach this topic in future neuroscientific, clinical, and art-related research? This paper presents a review of this field and answer to these questions. We consider the current case reports for seven main disorders—Alzheimer's and Parkinson's disease, frontotemporal and Lewy body dementia, corticobasal degeneration, aphasia, as well as stroke—consolidating arguments for factors and changes related to art-making and critiquing past methods. Taking the published artworks from these papers, we then conduct our own assessment, employing computerized and human-rater-based approaches, which we argue represent best practice to identify stylistic or creativity/quality changes. We suggest, indeed, some evidence for systematic patterns in art-making for specific disorders and also find that case authors showed rather high agreement with our own assessments. More important, through opening this topic and past evidence to a systematic review, we hope to open a discussion and provide a theoretical and empirical foundation for future application and research on the intersection of art-making and the neurotypical, the changed, and the artistic brain.  相似文献   

19.
Entropy is a concept that emerged in the 19th century. It used to be associated with heat harnessed by a thermal machine to perform work during the Industrial Revolution. However, there was an unprecedented scientific revolution in the 20th century due to one of its most essential innovations, i.e., the information theory, which also encompasses the concept of entropy. Therefore, the following question is naturally raised: “what is the difference, if any, between concepts of entropy in each field of knowledge?” There are misconceptions, as there have been multiple attempts to conciliate the entropy of thermodynamics with that of information theory. Entropy is most commonly defined as “disorder”, although it is not a good analogy since “order” is a subjective human concept, and “disorder” cannot always be obtained from entropy. Therefore, this paper presents a historical background on the evolution of the term “entropy”, and provides mathematical evidence and logical arguments regarding its interconnection in various scientific areas, with the objective of providing a theoretical review and reference material for a broad audience.  相似文献   

20.
We consider state changes in quantum theory due to “conditional action” and relate these to the discussion of entropy decrease due to interventions of “intelligent beings” and the principles of Szilard and Landauer/Bennett. The mathematical theory of conditional actions is a special case of the theory of “instruments”, which describes changes of state due to general measurements and will therefore be briefly outlined in the present paper. As a detailed example, we consider the imperfect erasure of a qubit that can also be viewed as a conditional action and will be realized by the coupling of a spin to another small spin system in its ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号