首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surface proton spin polarization created by the spin-polarization-induced nuclear Overhauser effect from optically polarized xenon can be transferred in a subsequent step by solid-state cross polarization to another nuclear spin species such as29Si. The technique exploits the dipolar interactions of xenon nuclear spins with high γ nuclei such as1H, and is experimentally simpler than direct polarization transfer from129Xe to heteronuclei such as13C and29Si.  相似文献   

2.
Hyperpolarized nuclear spins are observed in optically pumped iron-doped InP from 70 K to 140 K. 31P NMR was carried out at 9.28 T (159.8 MHz) during optical excitation with circularly polarized light, using a laser diode (λ∼830 nm) as a source. The enhancement of the nuclear spin polarization by optical pumping at 70 K is estimated to be about 34 for those nuclei in the region of the sample absorbing light. This enhancement decreases with increasing temperature. As the direction of the enhanced nuclear spin polarization is found parallel or antiparallel to the travelling direction of the σ+ or σ, the contact hyperfine interaction is dominant compared to the dipolar hyperfine interaction.  相似文献   

3.
The spin polarization of optically created conduction electrons in p-type AlGaAs/GaAs heterostructures was observed via the degree of circular polarization of the photoluminescence. Application of a magnetic field perpendicular to the propagation of the light allows one to determine the spin relaxation time T1 and the electron lifetime τ in the conduction band. By tilting the magnetic field with respect to an estimate of the effective nuclear field acting on the electrons can be obtained.  相似文献   

4.
The nuclear polarization of3He by optical pumping using discharge lamps is described, as well as attempts (both successful and unsuccessful) to make a polarized3He target. Recent experimental results with a polarized3He target are presented. Experiments to polarize3He using a laser as a pumping light source are described, and the prospects for producing a dense polarized3He target are indicated. The polarization of other nuclei, especially Xe and Kr, by spin transfer from laser polarized alkalis is described.On Leave of Abscence From, Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S 1A7  相似文献   

5.
The alignment correlation term in the β-ray angular distribution from purely nuclear spin aligned 20F has been measured to test the G-parity conservation law which is one of the fundamental symmetries in the weak nucleon current. We utilized the hyperfine interaction of 20F in an MgF2 single crystal and successfully created the pure alignment from the polarization by means of the spin manipulation technique based on the β-NMR method.  相似文献   

6.
The yttrium complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(1′-13C-acetic acid) [13C]DOTA was synthesized. Fast dissolution dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) studies revealed that the 89Y, 13C, and 15N nuclei present in the complex could be co-polarized at the same optimum microwave irradiation frequency. The liquid-state spin–lattice relaxation time T 1 of these nuclei were found to be reasonably long to preserve some or most of the DNP-enhanced polarization after dissolution. The hyperpolarized 13C and 89Y NMR signals were optimized in different glassing mixtures. The overall results are discussed in light of the thermal mixing model of DNP.  相似文献   

7.
The 2S-1S transition in light muonic atoms is very sensitive to parity violation correlations induced via neutral currents. Observables depending on these transitions such as the photon polarization and the angular correlation between the emitted radiation and the atom polarization are a clear signal of weak neutral currents in atoms. We find the relation between the lepton and quark couplings and these observables emphasizing the effect of the nuclear spin. The results expected in muonic, atoms μ-4He and μ-3He are given.  相似文献   

8.
The concept of introducing an additional, stable paramagnetic species into photosynthetic reaction centres to increase the information content of their spin polarized transient EPR spectra is investigated theoretically. The light-induced electron transfer in such systems generates a series of coupled three-spin states consisting of sequential photoinduced radical pairs coupled to the stable spin which acts as an “observer”. The spin polarized transient EPR spectra are investigated using the coupled three-spin system P+IQ A in pre-reduced bacterial reaction centres as a specific example which has been studied experimentally. The evolution of the spin system and the spin polarized EPR spectra of P+IQ A and Q A following recombination of the radical pair (P = primary donor, I = primary acceptor, QA = quinone acceptor) are calculated numerically by solving the equations of motion for the density matrix. The net polarization of the observer spin is also calculated analytically by perturbation theory for the case of a single, short-lived, charge-separated state. The result bears a close resemblance to the chemically induced nuclear polarization (CIDNP) generated in photolysis reactions in which a nuclear spin plays the role of the observer interacting with the radical pair intermediates. However, because the Zeeman frequencies of the three electron spins involved are usually quite similar, the polarization of the electron observer spin in strong magnetic fields can reflect features of the CIDNP effect in both, high and low magnetic fields. The dependence of the quinone spin polarization on the exchange couplings in the three-spin system is investigated by numerical simulations, and it is shown that the observed emissive polarization pattern is compatible with either sign, positive or negative, for a range of exchange couplings, JPI, in the primary pair. The microwave frequency and orientation dependence of the spectra are discussed as two of several possible criteria for determining the sign of JPI.  相似文献   

9.
While efficient nuclear polarization has earlier been reported for the charged exciton in InAs/GaAs quantum dots at zero external magnetic field, we report here on a surprisingly high degree of circular polarization, up to ≈60%60%, for the neutral exciton emission in individual InAs/GaAs dots. This high degree of polarization is explained in terms of the appearance of an effective nuclear magnetic field which stabilizes the electron spin. The nuclear polarization is manifested in experiments as a detectable Overhauser shift. In turn, the nuclei located inside the dot are exposed to an effective electron magnetic field, the Knight field. This nuclear polarization is understood as being due to the dynamical nuclear polarization by an electron localized in the QD. The high degree of polarization for the neutral exciton is also suggested to be due to separate in-time capture of electrons and holes into the QD.  相似文献   

10.
We have developed an optical pumping NMR system for semiconductors as an effective nuclear spin polarizer for a solid-state NMR quantum computer. The system was successfully applied to enhance 31P nuclear spin polarization in InP doped with Fe, and the enhancement of the 31P NMR signal by more than two orders of magnitude was achieved. We also observed the strong dependences of the enhancement on the helicity and the photon energy of incident light. The most effective enhancement was achieved with the helicity σ+ and photon energy smaller than the bandgap by 1015 meV.  相似文献   

11.
At several (h+12 0 0) reciprocal lattice positions of PrSn3, we observed Bragg scattering of neutrons which is purely due to the nuclear spin polarization of 141Pr, and could measure the temperature dependence of the polarization between 10 mK and 4.2 K. From the perfectly polarized state of the nuclear spins, the difference between the spin-dependent nuclear scattering lengths b+ and b- has been determined to be b+ - b- = -0.110 ± 0.006 × 10-12 cm, which is significantly larger in magnitude than the previously reported value. An additional electronic polarization which is linearly proportional to the nuclear spin polarization has also been observed.  相似文献   

12.
We study spin transport of holes through microstructures modulated periodically by diluted magnetic semiconductor (DMS) sections, stubless or stubbed. The stubs are symmetric or asymmetric and the magnetizations of consecutive DMS sections are parallel or antiparallel. The transmission coefficients of holes with spin up (T+) or down (T-) are drastically different since the spins feel different potential profiles in the DMS sections. As a result, nearly square-wave patterns, or wide plateaus and oscillations, can be obtained for the transmission and the spin polarization as functions of the incident energy or of various parameters of the periodically repeated unit. Results for simple and composite units with and without deviations from perfect periodicity are reported. Some of the structures considered exhibit a strong spin-filtering behavior.  相似文献   

13.
The shaping of nuclear spin polarization profiles and the induction of nuclear resonances are demonstrated within a parabolic quantum well using an externally applied gate voltage. Voltage control of the electron and hole wave functions results in nanometer-scale sheets of polarized nuclei positioned along the growth direction of the well. Applying rf voltages across the gates induces resonant spin transitions of selected isotopes. This depolarizing effect depends strongly on the separation of electrons and holes, suggesting that a highly localized mechanism accounts for the observed behavior.  相似文献   

14.
We studied the macroscopic effects of nuclear magnetization. Highly polarized xenon is often used to increase the sensitivity in NMR investigations of porous media, diluted liquids or for imaging in the gas phase. In the condensed phase, however, highly nuclear spin polarized xenon also possesses a sizable magnetization due to the nuclear spin density. This results in an additional magnetic field, that is used to measure the polarization of the sample, when only the particle density is known. Here we find Pz≈0.8 corresponding to a spin temperature of 0.5 mK. We use isotopically enriched xenon with a 129Xe abundance of 0.71. At high abundance of 129Xe and high nuclear polarization the dipolar linewidth is considerably reduced. We find for small angle excitation a reduction from 650 Hz to 400 Hz. We investigate this using a thin film geometry. The susceptibility effects of the substrate and the Xe film are treated. The macroscopic angle between the normal of the film and the external field strongly changes the polarization induced line shift and line width. The first follows an expected cos2θ dependence with an understood amplitude the latter however is not understood up to now. Relaxation of 129Xe in the condensed film is observed to be T1=15±1.8 min, much faster than expected. To cite this article: P. Gerhard et al., C. R. Physique 5 (2004).  相似文献   

15.
We present a technique for manipulating the nuclear spins and the emission polarization from a single optically active quantum dot. When the quantum dot is tunnel coupled to a Fermi sea, we have discovered a natural cycle in which an electron spin is repeatedly created with resonant optical excitation. The spontaneous emission polarization and the nuclear spin polarization exhibit a bistability. For a σ(+) pump, the emission switches from σ(+) to σ(-) at a particular detuning of the laser. Simultaneously, the nuclear spin polarization switches from positive to negative. Away from the bistability, the nuclear spin polarization can be changed continuously from negative to positive, allowing precise control via the laser wavelength.  相似文献   

16.
We demonstrate the suppression of nuclear-spin fluctuations in an InAs quantum dot and measure the timescales of the spin narrowing effect. By initializing for tens of milliseconds with two continuous wave diode lasers, fluctuations of the nuclear spins are suppressed via the hole-assisted dynamic nuclear polarization feedback mechanism. The fluctuation narrowed state persists in the dark (absent light illumination) for well over 1 s even in the presence of a varying electron charge and spin polarization. Enhancement of the electron spin coherence time (T2*) is directly measured using coherent dark state spectroscopy. By separating the calming of the nuclear spins in time from the spin qubit operations, this method is much simpler than the spin echo coherence recovery or dynamic decoupling schemes.  相似文献   

17.
We study the absorption by neutral excitons and positively charged excitons (trions) following a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the gas of free holes is created by the formation of trions. The evolution of these populations is described, including spin flip and trion formation. We evaluate the contributions of phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blocked.  相似文献   

18.
A new method has been developed for measuring the magnitude of nuclear spin polarization of a secondary, radioactive beam by making a pulsed magnetic field measurement that does not require advance knowledge of the nuclide's magnetic moment. Using a standard β NMR apparatus, a magnetic double ratio is determined from the counting rates in 0° and 180° β detectors for magnetic field on and off conditions. This ratio provides direct information on the induced spin polarization of a radioactive beam. A demonstration of the method was performed using spin polarized 12B nuclei produced by fragmentation of an 80 MeV/nucleon 18O beam in a Nb target. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The pure nuclear spin alignments of 8Li and 8B were produced from the nuclear spin polarization applying the β-NMR method. The alignment correlation terms in the β-ray angular distribution were observed to test the G parity conservation in the nuclear β decay.  相似文献   

20.
We present the results of experiments on dynamic nuclear polarization and relaxation of 75As in silicon crystals. Experiments are performed in strong magnetic fields of 4.6 T and temperatures below 1 K. At these conditions donor electron spins are fully polarized, and the allowed and forbidden electron spin resonance transitions are well resolved. We demonstrate effective nuclear polarization of 75As nuclei via the Overhauser effect on the time scale of several hundred seconds. Excitation of the forbidden transitions leads to a polarization through the solid effect. The relaxation rate of donor nuclei has strong temperature dependence characteristic of Orbach process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号