首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The benzen ligand in [H2Os4(CO)106-C6H6)] is displaced in the reaction with Ph2C2 in the presence of Me3NO/MeCN. The cluster produced has been characterised as [H2Os4(CO)9(PH2C2)2] spectroscopically, and an X-ray crystallographic study has shown that one of the diphenylacetylene ligands is coordinated to one metal atom in a η2-mode and donates four electrons.  相似文献   

2.
The reaction between 1-pyrenecarboxaldehyde (C16H9CHO) and the labile triosmium cluster [Os3(CO)10(CH3CN)2] gives rise to the formation of two new compounds by competitive oxidative addition between the aldehydic group and an arene C-H bond, to afford the acyl complex [Os3(CO)10(μ-H)(μ-COC16H9)] (1) and the compound [Os3(CO)10(μ-H) (C16H8CHO)] (2), respectively. Thermolysis of [Os3(CO)10(μ-H)(μ-C16H9CO)] (1) in n-octane affords two new complexes in good yields, [Os3(CO)9(μ-H)2(μ-COC16H8)] (3) and the pyryne complex [Os3(CO)9(μ-H)23112-C16H8)] (4).In contrast, when 1-pyrenecarboxaldehyde reacts with [Ru3(CO)12] only one product is obtained, [Ru3(CO)9(μ-H)23112-C16H8)] (5), a nonacarbonyl cluster bearing a pyrene ligand. All compounds were characterized by analytical and spectroscopic data, and crystal structures for 1, 2, 4 and 5 were obtained.  相似文献   

3.
Heating [Os3(CO)10(μ-dppm)] (1) with two equivalents of PhSSPh in toluene under reflux provided three new triosmium compounds [(μ-H)Os3(CO)7(μ-SPh){μ34-Ph2PCHP(Ph)C6H4}] (2), [Os3(CO)8(μ-SPh)2(μ-dppm)] (3) and [(μ-H)Os3(CO)7(μ-η2-SC6H4)(μ-SPh)(μ-dppm)] (4) in 20%, 21% and 26% yields, respectively. In contrast, a similar reaction of 1 with two equivalents of PhTeTePh in refluxing toluene gave the binuclear compound [Os2(CO)4(μ-TePh)2(μ-dppm)] (6) in 15% yield, and two 50 electron isomeric compounds 5 and 7 with the formula [Os3(CO)8(μ-TePh)2(μ-dppm)] in 20% and 23% yields, respectively. Thermolysis of 3 at 110 °C afforded 4 in 53% yield which on further thermolysis in refluxing octane at 128 °C gave 2 in 45% yield. Thermolysis of 3 in refluxing octane also gave 2 in 50% yield. The new compounds, 2–7, were all spectroscopically characterized, and the X-ray structures of 2, 3 and 7 have been determined. Compound 2 contains a bridging SPh ligand and a μ34-Ph2PCHP(Ph)C6H4 ligand, formed by two kinds of C–H activation, including orthometallation of a phenyl group as well as an unusual activation of the methylene group of the dppm ligand. The molecular structure of 3 reveals that two SPh groups span the open Os–Os edge of the Os3 triangle, while the dppm ligand bridges one of the closed Os–Os edges. In compound 7, one TePh group spans the open Os–Os edge, while the other spans one of the two closed Os–Os edges and the dppm ligand bridges the third Os–Os vector.  相似文献   

4.
Tris(2-thienyl)phosphine, P(C4H3S)3, reacts with [Os3(CO)12] at 110 °C to give the phosphine-substituted derivatives [Os3(CO)11{P(C4H3S)3}] (1), [Os3(CO)10{P(C4H3S)3}2] (2) and [Os3(CO)9{P(C4H3S)3}3] (4), as well as the C-H activated product [Os3(μ-H)(CO)9{μ-P(C4H2S)(C4H3S)2}{P(C4H3S)3}] (3), in which the bridging ligand is equatorially coordinated to two osmium atoms. Thermolysis of 2 in refluxing toluene results in the formation of 3. Compound 1 can also be prepared in high yield from [Os3(CO)11(NCMe)]. The reaction of [Os3(μ-H)2(CO)10] with tris(2-thienyl)phosphine at room temperature afforded [Os3(μ-H)2(CO)9{P(C4H3S)3}] (5) and [Os3H(μ-H)(CO)10{P(C4H3S)3}] (6), with the ligand coordinated through the phosphorus atom whereas at elevated temperature the cyclometallated compounds [Os3(μ-H)(CO)93-P(C4H2S)(C4H3S)2}] (7) and [Os3(μ-H)(CO)83-P(C4H2S)(C4H3S)2{P(C4H3S)3}] (8) were obtained in addition to 5. Heating 6 in refluxing heptane furnished 5 via loss of one carbonyl ligand. Thermolysis of 1 and 3 in refluxing toluene gives 7 and 8, respectively, in good yields. In 3, the μ-P(C4H2S)(C4H3S)2 ligand is coordinated through the phosphorus to one Os atom and through a σ-Os-C bond to the second osmium atom. Compound 7 contains the μ3-P(C4H2S)(C4H3S)2 ligand bound through phosphorus to one Os atom, through a σ-Os-C bond to another and by an η2 (π)-interaction to the third osmium atom. Compounds 1, 2 and 4 contain the ligand coordinated exclusively through the phosphorus atom. The crystal and molecular structures of 2, 3, 5, 6 and 7 are reported.  相似文献   

5.
The reaction of the 'benzyne' cluster Os3H2(CO)9(C6H4) with diphenylacetylene affords the new compound Os3(CO)7(C6H4)[PhCC(H)Ph]2; a single crystal X-ray analysis of this product shows that two PhCC(H)Ph units and the benzyne moiety are bonded to the Os3 core as separate ligands, and that under these conditions there is no ligand condensation.  相似文献   

6.
Treatment of a solution of [Os3(CO)10(R2C2)] (R = Me (1, R = Ph (2)) in CH2Cl2 with Me3No/MeCN in the presence of R′2C2 affords the new organometallic cluster [Os3(CO)8(R2C2)(R′2C2)] (R = R′ = Me (3), R = R′ = Ph (4) and R = Ph, R′ = Me (5)). A single crystal X-ray analysis of compound 4 has established a triangular metal framework with both the alkyne units coordinated in a μ32-6-mode. In toluene, at 80°C, compound 4 undergoes rearrangement to the known compound, [Os3H(CO)8(Ph)C2(C6H4))] (6) in which CC bond formation has occurred to produce an osmacyclopentadiene ring.  相似文献   

7.
The clusters [H2Os4M(CO)12eta6-C6H6)] (M=Os, Ru) may be deprotonated to generate anions [Os4M(CO)12eta6-C6H6)]2- which react with [M′eta6-C6H5R) (MeCN)3]2+(M=Os, Ru; R=H, Me) to give the bicapped tetrahedral clusters [Os4(CO)12MM′eta6-C6H5R)2]. Whereas [Os4(CO)12M2eta6-C6H6)2] (M=Os, Ru) have one Meta6-C6H6) unit in a site connected to three other metals, {3}, and one in a site connected to four other metals, {4}, [Os4(CO)12OsRueta6-C6H6)2] has the Rueta6-C6H6) unit in the {3} site irrespective of whether the Os or Ru anion is capped. Coupling of these anions with Au2dppm yields [Os4M(CO)12eta6-C6H6)(Au2dppm)] (M=Os, Ru), which have the arene ligand in the axial site of a trigonal bipyramid and the digold unit capping two faces. Reduction of [H2Os5(CO)15] with K/Ph2CO and coupling with [Rueta5-C5H5)(MeCN)3]2+yields the monoanion [Os5(CO)15Rueta5-C5H5)]? which reacts with [AuPPh3]+ generating [Os5(CO)15Rueta5-C5H5)(AuPPh3)] with the “Ru(C5H5)” unit in the terminal {3} site.  相似文献   

8.
The reactions of diphenylpyridylphosphine ligand with H2Os3(CO)10 and H4Ru4(CO)12 were studied. It was found that the thermodynamic products of these reactions, (μ-H)Os3(CO)932-PhP(2-C5H4N)) (2) and H3Ru4(CO)1032-PhP(2-C5H4N)) (4), are formed through the oxidative addition of a P–Ph bond in the coordinated ligand and subsequent reductive elimination of benzene. In the case of triosmium cluster an unusually stable intermediate compound, (μ-H)2Os3(CO)832-PhP(2-C5H4N))(Ph) (1), containing cis hydride and σ-bonded phenyl was isolated and fully characterized. This cluster eliminates benzene to give (2) only under heating above 50 °C. Reaction of H4Ru4(CO)12 with diphenylpyridylphosphine gives first the H4Ru4(CO)10(μ,κ2-Ph2P(2-C5H4N)) cluster (3) with a bridging (P,N) coordination of the starting ligand, which easily converts into the phosphide cluster (4) at room temperature. The structures of the clusters (1)–(4) were established using 1H and 31P NMR spectroscopy and X-ray crystallography. Variable temperature 1H NMR study of (3) and (4) showed that the hydride environment in (3) is stereochemically nonrigid and complete exchange of all hydrides was observed at room temperature. The cluster (4) exists in solution as an equilibrium mixture of two isomers with different disposition of hydrides relative to the bridging pyridylphosphide moiety.  相似文献   

9.
Photoirradiation of Os3(CO)10(C14H20) (1) in n-hexane produces the double-decker cluster [Os3(CO)9(C28H40)] [Os3(CO)10] (7), which can also be prepared from the reaction of Os3(CO)9(C28H40) (2) and Os3(CO)10(NCMe)2. Further reaction of 7 with Os3(CO)10(NCMe)2 affords the triple-decker cluster [Os3(CO)9(C28H40)][Os3(CO)10]2 (8). The bis(diyne) complex Os3(CO)8(C14H20)2 (3) reacts with Os3(CO)10(NCMe)2 sequentially to yield the double-decker cluster [Os3(CO)8(C14H20)2][Os3(CO)10] (4) and the triple-decker cluster [Os3(CO)8(C14H20)2][Os3(CO)10]2 (5). Treatment of 3 with Co2(CO)8 at room temperature leads to the mixed-metal triple-decker cluster [Os3(CO)8(C14H20)2][Co2(CO)6]2 (6), while the reaction of 2 and Co2(CO)8 produces [Os3(CO)9(C28H40)][Co2(CO)6]2 (9) and [Os2(CO)6(C28H40)][Co2(CO)6]2 (10). Compound 10, which involves cluster degradation from Os3 to Os2, has been structurally characterized by an X-ray diffraction study.  相似文献   

10.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

11.
The valence saturated benzothiazolide triosmium cluster [Os3(CO)10(μ-η2-C7H4NS)(μ-H)] (1) reacts with tetramethylthiourea in refluxing toluene to give [Os3(CO)8(μ-η2-C7H4NS)(η2-SCNMe2NMeCH2)(μ-H)2] (5), which exists as a mixture of two isomers in solution, whereas the electron-deficient cluster [Os3(CO)932-C7H4NS)(μ-H)] (2) reacts with tetramethylthiourea in refluxing cyclohexane to give two new compounds [Os3(CO)8(μ-η2-C7H4NS)(η2-SCNMe2NMeCH2)(μ-H)2] (6) and [Os3(CO)9(μ-η2-C7H4NS)(η1-SC(NMe2)2)(μ-H)] (7). In contrast, the reaction of [Os3(CO)932-C7H3(2-CH3)NS)(μ-H)](3) with tetramethylthiourea in refluxing cyclohexane at 81 °C, gives only [Os3(CO)9(μ-η2-C7H3(2-CH3)NS)(η1-SC(NMe2)2)(μ-H)] (8) in 15% yield. Compound 7 converts into 6 in refluxing toluene whereas a similar thermolysis of 8 results non-specific decomposition. All the compounds have been characterized by elemental analysis, IR, 1H NMR and mass spectroscopic data together with single crystal X-ray diffraction analysis for 5 and 7. Both compounds 5 and 6 contain a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and are structurally very similar. In 5, the benzothiazolide ligand is coordinated to Os3 triangle via the nitrogen lone pair and C(2) carbon atom of the heterocyclic ring whereas in 6 the ligand is coordinated to the Os3 triangle via the nitrogen lone pair and the C(7) carbon atom of carbocyclic ring. In 7 and 8, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom which is also bound to the nitrogen atom of the benzothiazolide ligand.  相似文献   

12.
Reaction of [Re2(CO)8(MeCN)2] with 1,8-bis(diphenylphosphino)naphthalene (dppn) afforded three mono-rhenium complexes fac-[Re(CO)311-PPh2C10H6)(PPh2H)] (1), fac-[Re(CO)3111-(O)PPh2C10H6(O)PPh(C6H4)}] (2) and fac-[ReCl(CO)32-PPh2C10H6PPh2)] (3). Compounds 1-3 are formed by Re-Re bond cleavage and P-C and C-H bond activation of the dppn ligand. Each of these three complexes have three CO groups arranged in facial fashion. Compound 1 contains a chelating cyclometalated diphenylnaphthylphosphine ligand and a terminally coordinated PPh2H ligand. Compound 2 consists of an orthometalated dppn-dioxide ligand coordinated in a κ111-fashion via both the oxygen atoms and ortho-carbon atom of one of the phenyl rings. Compound 3 consists of an unchanged chelating dppn ligand and a terminal Cl ligand. Treatment of [Mn2(CO)8(MeCN)2] with a slight excess of dppn in refluxing toluene at 72 °C, gave the previously reported [Mn2(CO)8(μ-PPh2)2] (4), formed by cleavage of C-P bonds, and the new compound fac-[MnCl(CO)32-PPh2C10H6PPh2)] (5), which has an unaltered chelating dppn and a terminal Cl ligand. In sharp contrast, reaction of [Mn2(CO)8(MeCN)2] with slight excess of dppn at room temperature yielded the dimanganese [Mn2(CO)91-PPh2(C10H7)}] (6) in which the diphenylnaphthylphosphine ligand, formed by facile cleavage of one of the P-C bonds, is axially coordinated to one Mn atom. Compound 6 was also obtained from the reaction of [Mn2(CO)9(MeCN)] with dppn at room temperature. The XRD structures of complexes 1-3, 5, 6 are reported.  相似文献   

13.
Reaction of [Os3(μ-H)2(CO)10] with 3,4-dimethyl-1-phenylphosphole in refluxing cyclohexane affords two substituted triosmium clusters: [Os3(CO)9(μ-H)(μ3112-PhPC4H3Me2)] (1) and [Os3(CO)9(H)(μ212-PhPC4H4Me2)] (2), of which cluster 2 exhibits two chromatographically non-separable isomeric forms attributed to terminal and bridging coordination of the hydride ligand, respectively. When this reaction is performed in refluxing THF, the only product is the cluster [Os3(CO)9(μ-OH)(μ-H)(η1-PhPC4H2Me2)] (3). Crystallographic information obtained for cluster 3 shows the phosphole ligand occupying an equatorial position, as expected, while the OH group is asymmetrically bridging unlike previously reported similar compounds. Additionally, interaction of the labile cluster [Os3(CO)11(CH3CN)] with cyanoethyldi-tert-butylphosphine in dichloromethane at room temperature was found to give [Os3(CO)111- t Bu2PC2H4CN)] (4) as the only product; its crystallographic characterization shows that the phosphine ligand coordinates by means of the phosphorus atom in an equatorial fashion, analogous to compound 3.  相似文献   

14.
Reaction of the activated cluster [Os3(CO)11(CNMe)] with primary arsine AsH3 forms the arsinidine compound [H2Os33-AsH)(CO)11] (1a, 1b), which on further reaction with [Os3(CO)11(NCMe)] yields [(CO)11Os3As(Os3(CO)9H3)] (2) and with [H2Os3(CO)10] yields [H2Os3(CO)9As(Os3(CO)9H2)] (3). Similarly [H2Os3(CO)10] reacts with AsH3 at room temperature to afford 3 in good yields. Thermal degradation and rearrangement of 2 gives the pentanuclear cluster [H2Os5(CO)17AsH] (4).  相似文献   

15.
Treatment of unsaturated [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] (2) with tBuNC at room temperature gives [Os3(CO)8(CNBut)){μ3-Ph2PCH2P(Ph)C6H4}(μ-H)] (3) which on thermolysis in refluxing toluene furnishes [Os3(CO)7(CNBut){μ3-Ph2PCHP(Ph)C6H4}(μ-H)2] (4). Reaction of the labile complex [Os3(CO)9(μ-dppm)(NCMe)] (5) with tBuNC at room temperature affords the substitution product [Os3(CO)9(μ-dppm)(CNBut)] (6). Thermolysis of 6 in refluxing toluene gives 4. On the other hand, the reaction of unsaturated [Os3(CO)932-C7H3(2-Me)NS}(μ-H)] (7) with tBuNC yields the addition product [Os3(CO)9(CNBut){μ-η2-C7H3(2-Me)NS}(μ-H)] (8) which on decarbonylation in refluxing toluene gives unsaturated [Os3(CO)8(CNBut){μ32-C7H3(2-Me)NS}(μ-H)] (9). Compound 9 reacts with PPh3 at room temperature to give the adduct [Os3(CO)8(PPh3)(CNBut){μ-η2-C7H3(2-Me)NS(μ-H)] (10). Compound 8 exists as two isomers in solution whereas 10 occurs in four isomeric forms. The molecular structures of 3, 6, 8, and 10 have been determined by X-ray diffraction studies.  相似文献   

16.
Addition of tri(2-furyl)phosphine, PFu3, to [Os3(CO)10(μ-H)2] at room temperature gives [HOs3(CO)10(PFu3)(μ-H)] (1), while in refluxing toluene the same reactants afford [Os3(CO)93-PFu2(C4H2O)}(μ-H)] (2) resulting from orthometallatation of a furyl ring. Reaction of PFu3 with [Os3(CO)10−n(NCMe)n] (n = 0, 1, 2) affords the substituted clusters [Os3(CO)12−n(PFu3)n] (n = 1-3) (3-5), the phosphine ligands occupying equatorial position in all cases. Heating [Os3(CO)11(PFu3)] (3) in refluxing octane gives [Os3(CO)93-PFu)(μ32-C4H2O)] (6) which results from both carbon-hydrogen and carbon-phosphorus bond activation and contains both μ32-furyne and furylphosphinidene ligands. All new clusters have been characterized by spectroscopic methods together with single crystal X-ray diffraction for 2, 3 and 6.  相似文献   

17.
The complex Os3(CO)92-H)23-S) reacts with KOH/MeOH to produce the anionic complex [Os3(CO)92-H)(μ3-S)?, which reacts in turn with RO+ (R = Me, Et) to form HOs3(CO)9SR. This complex is especially reactive towards ligands L (L = C2H4, CO, PR3 and MeCN) to generate complexes of the type Os3(CO)92-H)(μ2-SR)(L). At 125°C the complex Os3(CO)92-H)(μ2-SR)(C2H4) (in the presence of C2H4) ejects RH and CO to form Os3(CO)82-H)?(μ3-S)(CHCH2). The structures of the new complexes are described and the probable reaction pathways discussed.  相似文献   

18.
Reaction of Ph2PCC(CH2)5CCPh2 with Os3(CO)10(NCMe)2 affords Os3(CO)10(μ,η2-(Ph2P)2C9H10) (1) and the double cluster [Os3(CO)10]2(μ,η2- (Ph2P)2C9H10)2 (2), through coordination of the phosphine groups. Thermolysis of 1 in toluene generates Os3(CO)7(μ-PPh2)(μ35-Ph2PC9H10) (3) and Os3(CO)8(μ-PPh2)(μ36-Ph2P(C9H10)CO) (4). The molecular structures of 1, 3, and 4 have been determined by an X-ray diffraction study. Both 3 and 4 contain a bridging phosphido group and a carbocycle connected to an osmacyclopentadienyl ring, which are apparently derived from C-P bond activation and C-C bond rearrangement of the dpndy ligand governed by the triosmium clusters.  相似文献   

19.
The ruthenium-tin complex, [Ru2(CO)4(SnPh3)2(μ-pyS)2] (1), the main product of the oxidative-addition of pySSnPh3 to Ru3(CO)12 in refluxing benzene, is [Ru(CO)2(pyS)(SnPh3)] synthon. It reacts with PPh3 to give [Ru(CO)2(SnPh3)(PPh3)(κ2-pyS)] (2) and further with Ru3(CO)12 or [Os3(CO)10(NCMe)2] to afford the butterfly clusters [MRu3(CO)12(SnPh3)(μ3-pyS)] (3, M=Ru; 4, M=Os). Direct addition of pySSnPh3 to [Os3(CO)10(NCMe)2] at 70 °C gives [Os3(CO)9(SnPh3)(μ3-pyS)] (5) as the only bimetallic compound, while with unsaturated [Os3(CO)83-PPh2CH2P(Ph)C6H4}(μ-H)] the previously reported [Os3(CO)8(μ-pyS)(μ-H)(μ-dppm)] (6) and the new bimetallic cluster [Os3(CO)7(SnPh3){μ-Ph2PCH2P(Ph)C6H4}(μ-pyS)[(μ-H)] (7) are formed at 110 °C. Compounds 1, 2, 4, 5 and 7 have been characterized by X-ray diffraction studies.  相似文献   

20.
Reaction of 2,2-Dimethylpropylidynephosphane with Tungsten Hexachloride as well as the Crystal Structures of [(Cl3PO)WCl4(H9C4? C?C—C4H9)] and [(H5C6)4As][WCl6] The reaction of 2,2-dimethylpropylidynephosphane, (CH3)3C? C?P|, with tungsten hexachloride suspended in POCl3 results, with oxidation of the phosphorus atom, in 2,2,5,5-tetramethylhex-3-yne. This compound reacts with tungsten tetrachloride simultaneously formed to give the alkyne complex [(Cl3PO)WCl4(H9C4? C?C—C4H9)], which is dark green in colour. A small amount of tungsten hexachloride is reduced merely to tungsten pentachloride; after the addition of tetraphenyl arsonium chloride it can be isolated as [(H5C6)4As][WCl6]. For this compound, a new and very simple synthesis from WCl6, [(H5C6)4As]Cl and C2Cl4 as reducing agent is described. The structure of [(Cl3PO)WCl4(H9C4? C?C? C4H9)] has been determined from X-ray diffraction data (R = 5.8%). The complex crystallizes in the monoclinic space group P21/n with: {a = 1510; b = 1517; c = 849 pm; β = 93.1°; Z = 4}. The tungsten atom is sevenfold coordinated by four equatorial chlorine atoms, by the C°C group of the acetylene ligand and by the oxygen atom of the POCl3 molecule in trans position. The bulky acetylene ligand which is nearly symmetrically bound shifts the chlorine atoms towards the solvated POCl3 molecule so that no common plane with the tungsten atom is possible. With 130 pm the C°C bond length of the 2,2,5,5-tetramethyl-3-yne ligand corresponds to a C°C double bond. The i.r. spectrum of [(H5C6)As][WCl6] shows two WCl6 strectching vibrations and therefore proves a reduction of octahedral symmetry. In agreement with the results of a crystal structure determination (space group P4/n; a = 1301; c = 780 pm; Z = 2.7%) the [WCl6]?-anion has nearly exact C4V symmetry with somewhat shorter W? Cl bond lengths parallel to the fourfold axis of rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号