首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A joint theoretical and experimental study of the electronic and structural properties of liquid crystalline metal-free phthalocyanines bearing a strong potential for charge and exciton transport has been performed. The synthesis of such compounds has been triggered by quantum chemical calculations showing that: (i) hole transport is favored in metal-free phthalocyanines by their extremely low reorganization energy (0.045 eV) and large electronic splittings; and (ii) the efficiency of energy transfer along the one-dimensional discotic stacks is weakly affected by rotational disorder due to the two-dimensional character of the molecules. We have synthesized two metal-free phthalocyanines with different branched aliphatic chains on the gram scale to allow for a full characterization of their solid-state properties. The two compounds self-organize in liquid crystalline mesophases, as evidenced by optical microscopy, differential scanning calorimetry, X-ray powder diffraction, and molecular dynamics simulations. They exhibit a columnar rectangular mesophase at room temperature and a columnar hexagonal mesophase at elevated temperature.  相似文献   

2.
Strong amplification of chirality occurs in dynamic, but highly ordered, helical columns in n-butanol, for which one chiral seed molecule suffices to render a column of 400 molecules to become homochiral. The chiral columns are formed in a thermally dependent stepwise process. The transition from achiral stacks to helical columns is highly cooperative owing to well-defined intermolecular interactions. `Sergeant and Soldiers' measurements allow for the calculation of the association constant and cooperativity length of the homochiral segments. The `Sergeant and Soldiers' data on the number of molecules within a column show a strikingly good match with data obtained from a theoretical model describing the self-assembly of the discotic molecules as a function of temperature and concentration.  相似文献   

3.
Discotic charge transfer twins, a novel class of discotic liquid-crystalline compounds were studied. These compounds consist of triphenylene units (as donors) which are chemically linked via flexible spacers of various lengths to trinitrofluorenone units (acting as acceptor). They display a liquid-crystalline phase over a wide temperature range extending up to 240-260°C. Based on X-ray analysis a structural model is proposed for the liquid-crystalline phase: the molecules are arranged in columns in such a way that mixed stacks occur, the intercolumnar packing possesses an orthorhombic symmetry. The neighbouring columns are connected along specific directions via flexible spacers which give rise to highly anisotropic structural properties of this columnar liquid-crystalline phase.  相似文献   

4.
Discotic liquid crystals: a new generation of organic semiconductors   总被引:1,自引:0,他引:1  
Discotic (disc-like) molecules typically comprising a rigid aromatic core and flexible peripheral chains have been attracting growing interest because of their fundamental importance as model systems for the study of charge and energy transport and due to the possibilities of their application in organic electronic devices. This critical review covers various aspects of recent research on discotic liquid crystals, in particular, molecular design concepts, supramolecular structure, processing into ordered thin films and fabrication of electronic devices. The chemical structure of the conjugated core of discotic molecules governs, to a large extent, their intramolecular electronic properties. Variation of the peripheral flexible chains and of the aromatic core is decisive for the tuning of self-assembly in solution and in bulk. Supramolecular organization of discotic molecules can be effectively controlled by the choice of the processing methods. In particular, approaches to obtain suitable macroscopic orientations of columnar superstructures on surfaces, that is, planar uniaxial or homeotropic alignment, are discussed together with appropriate processing techniques. Finally, an overview of charge transport in discotic materials and their application in optoelectronic devices is given.  相似文献   

5.
在200 K以下己烯(C6H12)可以在Ru()表面上以分子状态稳定吸附.偏振角分辨紫外光电子谱(ARUPS)结果表明,己烯分子在垂直于衬底表面并沿衬底表面<>晶向的平面内,己烯分子的轴向沿<>晶向倾斜.随着衬底温度的提高,到200 K以上,己烯分解生成新的碳氢化合物.己烯分解后,πCH分子轨道能级向高结合能方向移动了0.2 eV,同时己烯中C的1s能级向低结合能方向移动了 0.3 eV.  相似文献   

6.
The structure of the charge-transfer complex hexakis(n-hexyloxy)triphenylene-2,4,7-trinitro-9-fluorenone (HAT6-TNF) has been characterized by neutron scattering, X-ray diffraction (XRD), optical microscopy, and dielectric relaxation spectroscopy (DRS). On the basis of these data and the 1:1 stoichiometry, a consistent structure for the complex is proposed. This structure differs markedly from structures previously proposed for similar materials, because the TNF molecules are found to be situated between the discotic columns rather than sandwiched between the discotic molecules of a given column. The addition of TNF to HAT6 is found to stiffen the structure, and quasi-elastic neutron scattering shows that the local dynamics of the discotic molecules in HAT6-TNF is slowed by the presence of the TNF molecules. This scenario is consistent with the observation of two VFT-type (VFT=Vogel-Fulcher-Tamman) dielectric relaxation processes that relate to the columnar glass transition and a polyethylene-like hindered glass transition originating from the nano-phase-separated fraction of the aliphatic tails.  相似文献   

7.
The concept of aromaticity was first invented to account for the unusual stability of planar organic molecules with 4n + 2 delocalized pi electrons. Recent photoelectron spectroscopy experiments on all-metal MAl(4)(-) systems with an approximate square planar Al(4)(2-) unit and an alkali metal led to the suggestion that Al(4)(2-) is aromatic. The square Al(4)(2-) structure was recognized as the prototype of a new family of aromatic molecules. High-level ab initio calculations based on extrapolating CCSD(T)/aug-cc-pVxZ (x = D, T, and Q) to the complete basis set limit were used to calculate the first electron affinities of Al(n)(), n = 0-4. The calculated electron affinities, 0.41 eV (n = 0), 1.51 eV (n = 1), 1.89 eV (n = 3), and 2.18 eV (n = 4), are all in excellent agreement with available experimental data. On the basis of the high-level ab initio quantum chemical calculations, we can estimate the resonance energy and show that it is quite large, large enough to stabilize Al(4)(2-) with respect to Al(4). Analysis of the calculated results shows that the aromaticity of Al(4)(2-) is unusual and different from that of C(6)H(6). Particularly, compared to the usual (1-fold) pi aromaticity in C(6)H(6), which may be represented by two Kekulé structures sharing a common sigma bond framework, the square Al(4)(2-) structure has an unusual "multiple-fold" aromaticity determined by three independent delocalized (pi and sigma) bonding systems, each of which satisfies the 4n + 2 electron counting rule, leading to a total of 4 x 4 x 4 = 64 potential resonating Kekulé-like structures without a common sigma frame. We also discuss the 2-fold aromaticity (pi plus sigma) of the Al(3)(-) anion, which can be represented by 3 x 3 = 9 potential resonating Kekulé-like structures, each with two localized chemical bonds. These results lead us to suggest a general approach (applicable to both organic and inorganic molecules) for examining delocalized chemical bonding. The possible electronic contribution to the aromaticity of a molecule should not be limited to only one particular delocalized bonding system satisfying a certain electron counting rule of aromaticity. More than one independent delocalized bonding system can simultaneously satisfy the electron counting rule of aromaticity, and therefore, a molecular structure could have multiple-fold aromaticity.  相似文献   

8.
We describe at the quantum-chemical level the main parameters that control charge transport at the molecular scale in discotic liquid crystals. The focus is on stacks made of triphenylene, hexaazatriphenylene, hexaazatrinaphthylene, and hexabenzocoronene molecules and derivatives thereof. It is found that a subtle interplay between the chemical structure of the molecules and their relative positions within the stacks determines the charge transport properties; the molecular features required to promote high charge mobilities in discotic materials are established on the basis of the calculated structure-property relationships. We predict a significant increase in the charge mobility when going from triphenylene to hexaazatrinaphthylene; this finding has been confirmed by measurements carried out with the pulse-radiolysis time-resolved microwave conductivity technique.  相似文献   

9.
Theoretical simulations of the angle-resolved ultraviolet photoemission spectra (ARUPS) for the oligomer of poly(tetrafluoroethylene) [(CF(2))(n); PTFE] were performed using the independent-atomic-center approximation combined with ab initio molecular orbital calculations. Previously observed normal-emission spectra for the end-on oriented sample (with long-chain axis perpendicular to the surface) showed the incident photon-energy (hnu) dependence due to the intramolecular energy-band dispersion along the one-dimensional chain, and the present simulations successfully reproduced this hnu dependence of the observed spectra. We employed the experimentally observed helical structure for PTFE oligomers for the simulations. We also calculated the density of states (DOS) for the planar zigzag structure, and examined the changes in the electronic structure due to the difference in the molecular structure by comparing the DOS for the helical and planar zigzag structures. Only a small change in the DOS was found between these structures, showing little change of the electronic structure between these conformations. We also evaluated the inner potential V(0), which is the parameter defining the energy origin of the free-electron-like final state, and checked the validity of the value of -10 eV estimated in our previous study using the experimentally observed hnu dependence of the peak intensity. The estimation of V(0) was performed by pursuing the best agreement between the energy-band dispersion [E=E(k)] relation along the chain direction obtained from the simulated spectra and the experimentally deduced one. An excellent agreement in the topmost band was achieved when the assumed inner potential V(0) was set at about zero. This value of V(0) is much different from the value of V(0)=-10 eV in the previous study, suggesting the invalidity of the previous assumption at the estimation of V(0) from the peak intensity variation with hnu. Using the presently obtained V(0), we could derive more reliable E=E(k) dispersion relation from the observed ARUPS spectra. The comparison of this newly derived relation gave good agreement with theoretically calculated E=E(k) relations, in contrast to the poor agreement for the previous results with V(0)=-10 eV.  相似文献   

10.
含DMIT配体配合物的结构与导电性   总被引:5,自引:0,他引:5  
方奇  游效曾 《结构化学》1993,12(6):471-479
本文描述了含DMIT(4,5-二硫基-1,3-二硫杂环戊烯-2-硫酮)配体配合物的含成和导电性,讨论了其各个结构层次及其与导电性的关系。Ni、Pd、Pt、的DMIT导电配合物的分子结构特征是平面构型和离域π电子态,晶体结构特征是配位阴离子堆砌成各种形式的、导电能力不同的分子柱和分子层,作为非导电组元的平衡离子对导电性也有重要影响。  相似文献   

11.
The structure of rigid-chain polyesters and polyamides which possess flexible side chains consisting of methylene or 1,4,7-trioxaoctyl oxide units have been investigated by means of X-ray scattering. The X-ray studies were performed on fibres and monodomains. Additional information was gained from calorimetric, dilatometric and microscopic studies. The investigations revealed that these polymers display mesophases and that the structures of the mesophases differ from those observed for discotic and calamitic phases. They are characterized by the fact that in the ordered and disordered phases board-like molecules are stacked parallel on top of each other and that these stacks of molecules are oriented parallel to each other. In the least ordered phase the molecules are only oriented parallel to each other. The various modifications of the mesophases observed so far differ with respect to each other in terms of the order within the stacks as well as in terms of the spatial arrangements of the stacks. A characteristic feature is the frequent absence of any correlation between the long range order which exists along different principal axes of the structure. We have coined the term sanidic for this new type of mesophase.  相似文献   

12.
A plastic columnar discotic phase is reported for an asymmetrically substituted triphenylene. It is characterized by a three-dimensional crystal-like registry of ordered columns in a hexagonal lattice while the disc molecules within the columns are able to rotate. At the phase transition from the normal discotic hexagonal phase to the new phase only very minute changes in structure and dynamics occur.  相似文献   

13.
Artificial Au atomic chains with individual Pd impurities were assembled from single metal atoms with a scanning tunneling microscope on a NiAl(110) surface. Scanning tunneling spectroscopy (STS) revealed an electronic resonance 2.15 eV above the Fermi energy localized within 4 A of single Pd atom impurities and two electronic resonances 2.25 eV and 2.95 eV above the Fermi energy localized within 8 A of Pd dimer impurities. The emergence of these localized resonances was studied by STS at each stage of the atom-by-atom assembly. Additionally, conductance images of the chains revealed delocalized electronic density oscillations in the pure Au segments of the chains.  相似文献   

14.
Two-photon photoemission (2PPE) spectroscopy is used to examine the excited electronic structure and dynamics at polyacene/Au(111) interfaces. Image resonances are observed in all cases (benzene, naphthalene, anthrathene, tetracene, and pentacene), as evidenced by the free-electron like dispersions in the surface plane and the dependences of these resonances on the adsorption of nonane overlayers. The binding energies and lifetimes of these resonances are similar for the five interfaces. Adsorption of nonane on top of these films pushes the electron density in the image resonance away from the metal surface, resulting in a decrease in the binding energy (-0.3 eV) and an increase in the lifetime (from <20 to approximately 110 fs). The insensitivity of the image resonances to the size of polyacene molecules and the absence of photoinduced electron transfer from the metal substrate to molecular states both suggest that the unoccupied molecular orbitals are not strongly coupled to the delocalized metal states or image potential resonances.  相似文献   

15.
We report a detailed AM1 investigation of the geometrical and electronic structure of Si70. For this purpose, bond lengths, bond orders, charges and molecular energy levels are widely analyzed, and compared with previous theoretical and experimental data on Si60 and homologous carbon clusters C70 and C60. The predicted D5h structure of Si70 is less delocalized than that of C70. Furthermore, Si70 presents the lowest ionization potential (7.63eV), the highest electron affinity (3.61 eV) and the smallest HOMO-LUMO gap (4.02eV) of the four studied clusters.  相似文献   

16.
COT-H在金属Ru表面上沉积的光电子能谱分析   总被引:1,自引:0,他引:1  
采用紫外光电子能谱(UPS),分析了不对称四苯基四苯乙炔基环辛四烯(COT H)有机发光材料与金属之间的界面电子结构,研究了在金属/COT H界面上的逸出功变化.UPS谱中位于费米能级以下5.6、7.9和10.2 eV处的三个谱峰分别来自于COT H材料中苯环的πCC、σCC和σCH轨道.位于3.8 eV处的谱峰反映了八个苯环聚合后具有π轨道特性的C-C键.从UPS谱图中可以看到, COT H材料的最高占有态(HOS:highest occupied state)位于费米能级以下1.8 eV处.COT H材料的逸出功只有3.2 eV,比清洁Ru表面的逸出功小1.0 eV.角分辨紫外光电子能谱(ARUPS)的结果表明,组成COT H分子应该近似平行于衬底表面.  相似文献   

17.
Copper cluster anions in the size range of 1-18 atoms are studied by photoelectron spectroscopy. Using photons of 5.0 eV energy the electronic level structure built from the delocalized s-orbitals of the atoms is revealed. An attempt is made to assign the observed bands to the electronic shells predicted by the jellium model. Even though the general behavior resembles the predictions of this model, the spectra are much more complicated reflecting the discrete atomic geometry of these particles.  相似文献   

18.
运用紫外光电子能谱(UPS)和低能电子衍射(LEED)技术,对银(110)表面上有机分子苝(perylene)的生长进行了研究.有机分子价带的4个特征峰分别位于费米能级以下3.5、4.8、6.4和8.5 eV处.当有机薄膜约为单分子层(厚度为0.3 nm)时, 苝在银(110)表面上形成C(6×2)的有序结构.角分辨紫外光电子能谱(ARUSP)的测量显示:在界面处的苝分子平面平行于衬底.苝在银(110)表面稳定性很高,随着对衬底加热,有机材料发生脱附,在140 ℃以下没有观察到分解现象.  相似文献   

19.
Theoretical and computational investigations of the excess charge distribution (ECD) in molecular complexes have attracted considerable attention as ECD is closely related to electronic properties of organic semiconductors, such as the efficiency of photoinduced charge separation in organic solar cells and charge transport in DNA and proteins. In this paper, we analyze the ECD in several representative models on the basis of ab initio and DFT calculations. We consider how changes in the reorganization energy, electronic coupling and charge transfer energy affect the ECD in the systems. In particular, we compare ECD in π stacks of polycyclic aromatic hydrocarbons and DNA nucleobases. While the π interaction between subunits in the systems is similar in both cases, ECD is quite different: the excess charge is found to be completely delocalized over the hydrocarbon stacks but strongly confined to a single nucleobase in DNA stacks. We also discuss the effects of conformational fluctuations on ECD in the stacks. Finally, ECD in amino acids and its dependence on the conformational changes are briefly considered.  相似文献   

20.
Germanium silicide diamondoids are used to determine electronic, structural, and vibrational properties of GeSi superlattice nanocrystals and bulk as their building block limit. Density functional theory at the generalized gradient approximation level of Perdew, Burke, and Ernzerhof (PBE) with 6-31G(d) basis including polarization functions is used to investigate the electronic structure of these diamondoids. The investigated molecules and diamondoids range from GeSiH6 to Ge63Si63H92. The variation of the energy gap is shown from nearly 7 eV toward bulk value which is slightly higher than the average of Si and Ge energy gaps. Variations of bond lengths, tetrahedral, and dihedral angles as the number of atoms increases are shown taking into account the effect of shape fluctuations. Localized and delocalized electronic charge distribution and bonds for these molecules are discussed. Vibrational radial breathing mode (RBM) converges from its initial molecular value at 332 cm?1 to its bulk limit at 0 cm?1 (blue shift). Longitudinal optical-highest reduced mass mode (HRMM) converges from its initial molecular value 332 cm?1 to experimental bulk limit at 420.7 cm?1 (red shift). Hydrogen vibrational modes are nearly constant in their frequencies as the size of diamondoids increases in contrast with lower frequency Ge–Si vibrational modes. GeSi diamondoids can be identified from surface hydrogen vibrational modes fingerprint, while the size of these diamondoids can be identified from Ge–Si vibrational modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号