首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A K Sood  S Dattagupta 《Pramana》1981,17(4):315-326
The three dominant mechanisms giving major contributions to vibrational relaxation in molecular systems are (a) pure dephasing, (b) depopulation (or energy relaxation), and (c) resonant transfer. Here (c) is not considered but the effects due to thesimultaneous occurrence of (a) and (b) are treated within a stochastic model. In dealing with (a), the vibrational frequency is assumed to undergo random uncorrelated ‘jump’, due to fluctuations in the environment of the active molecule between a continuous set of values. The ensuing results are somewhat different from those of the commonly used Kubo model of vibrational dephasing, especially at long times and appear to be better suited in interpreting certain experimental data. The model is next extended to include the simultaneous occurrence of (b). The calculation leads to two important conclusions: (i) the lineshape is not just the convolution of those due to (a) and (b), and (ii) the lineshape is asymmetric, if the intermolecular interactions are not isotropic.  相似文献   

2.
The molecular dynamics simulations (MD) are used to calculate the structural, vibrational and thermodynamic properties of pentaerythritol (PE) crystal up to 4 GPa. The pressure effect for the cell volume, lattice constants, and molecular geometry of solid PE are presented and discussed. It is observed that the C–C bonds has maximum variation, followed by C–H and C–O bonds, which means decomposition of the initial explosion may begin with the C–C bonds. The vibrational frequencies at ambient conditions slightly more than experimental results, and the pressure-induced frequency shifts of these modes are discussed.  相似文献   

3.
The pure rotational transitions of HCO+ in excited vibrational states located below 5000 cm−1 over the ground state have been investigated with a high-sensitivity frequency/magnetic field double modulation submillimeter-wave spectrometer in the frequency range of 280-810 GHz. The ions were generated in an extended negative glow discharge through a gas mixture of a few millitorrs of H2 and CO and 12 mTorr of Ar buffer gas. Throughout the experiments, the cell was maintained at liquid nitrogen temperature. In the present study, we have determined accurate molecular constants for the excited vibrational states. Our analysis suggests that there may be a higher order Coriolis interaction between the (0 3 1) and (1 2 0) states. In previous investigations, the Stark effect caused by the electric field present in the discharge plasma was cited as a reason for non-observations of low-J lines in the (0220) and for the systematic shifts observed for low-J lines in the (0110), (0220), (0310), and (0420) states of HCO+ as well as DCO+. In the present investigation, some low-J lines in the (0220) and (0420) states have been observed in emission. Furthermore, J = 8-7, J = 9-8 lines in (031e1) were detected in emission. This finding indicates that missing low-J lines for the Δ sublevel obtained in the past is not due to the Stark effect but due to small population differences in those levels.  相似文献   

4.
Born-Oppenheimer molecular dynamics (MD) simulations were performed in the framework of the semi-empirical molecular orbital method MSINDO to study water adsorption on rutile surfaces. Monolayer and doublelayer water coverage was considered on the rutile (1 1 0) and (1 0 0) surfaces and the adsorbate structures were determined. Vibrational density of states of hydrogen atoms were calculated by constant temperature MD simulations at 100 K. These were used to interpret the experimental vibrational spectrum by assigning all peaks to the particular types of hydrogen atoms.  相似文献   

5.
Spin–lattice relaxation times T1 in solid pregnenolone have been studied over a wide range of temperatures, from 77 up to 417 K. The dynamic processes arising from C3 motion of the three methyl substituents are separated, and their activation parameters are determined.  相似文献   

6.
本文使用Stillinger-Weber势函数和周期性边界条件,通过在原子尺度上的分子动力学计算研究了60°位错的位错心能量和运动情况.首先提出了相对简单的建立位错偶极子的新方法.在此基础上,借助于最近得到的对周期性映像作用的评估理论,由不同大小的3维计算模型得到的位错心能量的平均值为0.43 eV,这一结果不同于先前文献中的报导.另一方面,为研究位错运动在较大温度和压力范围下的表现,提出了相应解决方法来避免位错心在高温模拟环境时测量的不精确性.模拟结果显示位错速度相对于温度的变化曲线表现为波动形式.而且,位错的速度随模拟温度的升高而降低,这一结果与声子拖拽模型相吻合.  相似文献   

7.
The melting stage of bulk silicon is studied using classical molecular dynamics simulation. The mean square displacement and diffusion coefficient are focused allowing statistics analysis of the dynamics displacement of each atom. Three stages of the melting processes, premelting, accelerated melting and relaxation, are resolved. The structural development is evaluated through the stages by Lindemann index, non-Gaussian parameter and the second neighbor coordination number. The studies emphasize the observation that premelting occurs in the ideal crystal on melting.  相似文献   

8.
ABSTRACT

1H spin–lattice relaxation experiments have been performed for triphenylbismuth dissolved in fully deuterated glycerol and tetrahydrofuran. The experiments have been carried out in a broad frequency range, from 10?kHz to 40?MHz, versus temperature. The data have been analysed in terms of a relaxation model including two relaxation pathways: 1H-1H dipole–dipole interactions between intrinsic protons of triphenylbismuth molecule and 1H-2H dipole–dipole interactions between the solvent and solute molecules. As a result of the analysis, rotational correlation times of triphenylbismuth molecules in the solutions and relative translational diffusion coefficient between the solvent and solute molecules have been determined. Moreover, the role of the intramolecular 1H-1H relaxation contribution has been revealed, depending on the motional parameters, as a result of decomposing the overall relaxation dispersion profile into contributions associated with the 1H-1H and 1H-2H relaxation pathways. The possibility of accessing the contribution of the relaxation of the intrinsic protons is important from the perspective of exploiting Quadrupole Relaxation Enhancement effects as possible contrast mechanisms for Magnetic Resonance Imaging.  相似文献   

9.
The molecular dynamics process is investigated in this paper using a broadband fs time-resolved coherent anti-Stokes Raman spectroscopy (CARS) technique. By varying the timing of laser pulses, low vibrational states are started and studied on both the electronically excited B(3Π0u+) state and ground X(1Σ0g+) state of iodine in the gas phase at room temperature. According to change the pump wavelength or Stokes pulse as well as the wavelength of the detection window for the CARS signal, dynamics on different potential-energy surfaces can be accessed and detected by the CARS spectroscopy. Results show that the period of the oscillation is decreased for the excited B(3Π0u+) state as the wavelength of the pump pulses is increased, while it is increased for the ground X(1Σ0g+) state with the increase of the Stokes wavelength.  相似文献   

10.
利用分子动力学模拟方法研究了离子液体N-丁基吡啶四氟硼酸盐([BPy]BF4)与Tip4p模型水分子的二元体系的微观结构.比较了各组分间的径向分布函数,结果表明随着离子液体比例的增加,水与阴离子、水与阳离子头部吡啶环、阳离子头部与阴离子上相关原子间的径向分布函数峰值都呈现递增的趋势,而阳离子上丁基链末端碳原子间的径向分布函数没有明显变化;空间分布函数则直观地反映出阴离子主要分布在阳离子的吡啶环周围,水分子在阴离子周围近似呈均等分布,且几率随离子液体比例增大而增加;另外还探讨了不同离子液体比例下的二元体系中氢键的数目和寿命,结果均呈现一定规律的变化.  相似文献   

11.
The plastic deformation of bulk nanotwinned copper with embedded cracks under tension has been explored by using molecular dynamics simulations. Simulation results show that the cracks mainly act as dislocation sources during the plastic deformation and occasionally as sinks at later stage. The dislocation pile-up, accumulation and transformation at twin boundaries (TBs) control the plastic hardening and softening deformations. The TB dislocation pile-up zone is estimated to be 5.6–8 nm, which agrees well with previous experimental and simulation results. Furthermore, it is found that the flow stress vs. dislocation density at the hardening stage follows the Taylor-type relationship.  相似文献   

12.
基于玻璃化转变的分子串模型的分子串弛豫方程,提出了更为精确的模拟分子串中所有空间弛豫模式(SRM)的蒙特卡罗模拟方案. 模拟得出各个SRM的弛豫时间随温度和分子串长度的变化结果与分子串模型中分子串弛豫方程的预言完全一致,即理论预期和模拟结果相互印证. 应当指出,分子串能否作为液态中集体单元的必要条件是在考虑到分子串之间的不均匀随机相互作用后,分子串的所有SRM的定性特征是不能改变的,这就需要对不同分子串的SRM之间的耦合进行研究. 但是迄今为止,仍未发现相关的严格解,仅有近似的自洽弛豫平均场方法. 由此可知,所提出的模拟方案为研究不同分子串的SRM之间的耦合(包括上述自洽场的可行性)提供了必要的基础. 关键词: 玻璃化转变 弛豫动力学 蒙特卡罗模拟 分子串  相似文献   

13.
We investigated the mechanical responses of the nanoindented graphene-nanoribbon (GNR)-resonator using classical molecular dynamics simulations. The nanoindented force in this work was applied to the GNR's local point and then, GNR-resonator's frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the GNR during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The linear elastic regime in low applied force is explicitly separated with the non-linear elastic regime in high applied force. In particular, at the threshold point, a very small change of the nanoindented depth can cause great change in the resonance frequency, and this property can enable the GNR to be applied to electromechanical relay switching devices and the quantum-computer in quantum-mechanical coupling as well as mass detectors, pressure sensors, accelerometers, and alarms.  相似文献   

14.
冰晶石-氧化铝熔盐的分子动力学研究   总被引:1,自引:0,他引:1  
采用分子动力学方法,对冰晶石-氧化铝熔盐的结构及其电学性质进行了研究.通过对不同氧化铝含量熔盐的计算,证明文章采用的势函数参数,可以获得与实验相近的平均键长以及相同变化规律的密度.证实了Al-F-Al和Al-O-Al桥接络合离子的存在,由于这些络合离子的存在,阻碍了铝离子的自由运动,使得在铝离子电场作用下被带到阳极,降低了电解效率.同时离子淌度的计算显示钠离子是电场作用下导电的主要载流子.  相似文献   

15.
采用分子动力学模拟方法研究了样品温度对Ar+与SiC样品表面相互作用的影响。由模拟结果可知,SiC样品中Si原子的溅射产额随着温度的升高而增加,而温度对C原子的溅射产额影响不大。在相同温度下,Si原子的溅射产额要高于C原子的溅射产额。溅射出来的Si原子和C原子主要来源于样品的表层区域,样品中的Si和C原子密度、键密度及它们的成键方式也发生了较大的变化。初始样品中Si和C原子的密度是均匀的,而被轰击过后的样品表面Si原子的密度要高于C原子,而样品中部C原子的密度要高于Si原子。初始样品都是Si-C键,成键方式为Si-Csp3;被轰击过后又有Si-Si和C-C键,成键方式也发生了变化,还有Si-Csp1和Si-Csp2。  相似文献   

16.
A nanoscale gradient continuum theory along with molecular dynamics simulations are employed to investigate the size-dependent surface energy of nanoplates. Molecular dynamics simulations reveal that upon nanoplate thickness reduction, the redistribution of surface energy density along thickness direction causes the decrease of the surface energy of nanoplate free surfaces. Via introducing a calibration benchmark, the length scale model parameter of the gradient continuum theory is methodically determined. The calibrated continuum theory is shown to well predict the size-dependent surface energy and the associated redistribution of surface energy density within nanoplates.  相似文献   

17.
Molecular dynamics simulations are employed here to study the melting and superheating behaviors of bulk Palladium at high heating rates. Quantum Sutton-Chen many body potential is used for these simulations. Being heated, the superheating and melting behavior is found to be strongly affected by the heating rate, and heating rate induced randomization during non-equilibrium heating processes is found to be the main driving force for phase transformation, and it eliminates the energy barrier for nucleation. Not only Pd crystals but also Pd crystals with defects are studied. And the upper limit of heating rate induced superheating is determined to be around 2100?K.  相似文献   

18.
Classical molecular dynamics simulation technique is applied for investigation of the iron ablation by ultrashort laser pulses at conditions of deep hole for the first time. Laser pulse duration of 0.1 ps at wavelength of 800 nm is considered. The evolution of the ablated material in deep hole geometry differs completely from the free expansion regime as two major mechanisms are important for the final hole shape. The first one is the deposition of the ablated material on the walls, which narrows the hole at a certain height above its bottom. The second mechanism is related to ablation of the material from the walls (secondary ablation) caused by its interaction with the primary ablated particles. Properties of the secondary ablated particles in terms of the velocity and the angular distribution are obtained. The material removal efficiency is estimated for vacuum or in Ar environment conditions. In the latter case, the existence of well-defined vapor cloud having low center of the mass velocity is found. The processes observed affect significantly the material expulsion and can explain the decrease of the drilling rate with the hole depth increase, an effect observed experimentally.  相似文献   

19.
流体液滴在固体表面的浸润性对其润滑性能至关重要.本文利用分子动力学方法研究了正癸烷纳米液滴在铜表面上的润湿特性.结果表明:在平坦光滑表面上,壁面的厚度和分子数目对润湿效果影响不大.随着壁面能量势阱参数εs 增大,接触角线性减小.随着温度升高,液滴的接触角减小.在沟槽粗糙表面上,随着粗糙度因子增大,对于疏液表面,接触角增大到一定值后基本保持不变,符合Cassie理论;中性和亲液表面接触角则会减小,为Wenzel润湿模式.当表面分数增大时,疏液与亲液表面接触角整体呈减小的趋势,对中性表面影响不大.当温度升高时,粗糙疏液表面接触角会增大,润湿效果更差,而粗糙中性和亲液表面液滴润湿性会更好.  相似文献   

20.
《Physics letters. A》2014,378(38-39):2876-2880
In recent years, synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) has led to extensive studies on their exceptional properties. In this study, the torsional vibration behavior of boron-nitride nanotubes (BNNTs) is explored on the basis of molecular dynamics (MD) simulation. The results show that the torsional frequency is sensitive to geometrical parameters such as length and boundary conditions. The axial vibration is found to be induced by torsional vibration of nanotubes which can cause instability in the nanostructure. It is also observed that the torsional frequency of BNNTs is higher than that of their carbon counterpart. Moreover, the shear modulus is predicted by incorporating MD simulation numerical results into torsional vibration frequency obtained through continuum-based model of tubes. Finally, it is seen that the torsional frequency of double-walled boron-nitride nanotubes (DWBNNTs) is between the frequencies of their constituent inner and outer tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号