首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Enhancing tumor targeting of nanocarriers has been a major strategy for advancing clinical translation of cancer nanomedicines. Herein, we report a head‐to‐head comparison between 5 nm renal clearable and 30 nm non‐renal clearable gold nanoparticle (AuNP)‐based drug delivery systems (DDSs) in the delivery of doxorubicin (DOX). While the two DDSs themselves had comparable tumor targeting, we found their different vascular permeability played an even more important role than blood retention in the delivery and intratumoral transport of DOX, of which tumor accumulation, efficacy, and therapeutic index were enhanced 2, 7, and 10‐fold, respectively, for the 5 nm DDS over 30 nm one. These findings indicate that ultrahigh vascular permeability of renal clearable nanocarriers can be utilized to further improve anticancer drug delivery without the need for prolonged blood retention.  相似文献   

2.
Stimulus‐responsive drug release possesses considerable significance in cancer therapy. This work reports an upconversion‐luminescence‐fueled DNA–azobenzene nanopump for rapid and efficient drug release. The nanopump is constructed by assembling the azobenzene‐functionalized DNA strands on upconversion nanoparticles (UCNPs). Doxorubicin (DOX) is loaded in the nanopump by intercalation in the DNA helix. Under NIR light, the UCNPs emit both UV and visible photons to fuel the continuous photoisomerization of azo, which acts as an impeller pump to trigger cyclic DNA hybridization and dehybridization for controllable DOX release. In a relatively short period, this system demonstrates 86.7 % DOX release. By assembling HIV‐1 TAT peptide and hyaluronic acid on the system, targeting of the cancer‐cell nucleus is achieved for perinuclear aggregation of DOX and enhanced anticancer therapy. This highly effective drug delivery nanopump could contribute to chemotherapy development.  相似文献   

3.
4.
合成了聚乙烯亚胺接枝二茂铁(PEI-Fc)两亲聚合物, 采用水包油法制备包埋疏水性抗癌药阿霉素(DOX)的载药胶束, 并利用胶束表面正电荷的PEI链段有效缔合DNA, 获得尺寸合适、 表面带正电荷的阿霉素与基因共负载微载体. 在磷酸盐(PBS)缓冲溶液中, 共负载微载体能够缓慢释放出DOX. 在硝酸铈铵存在下, 二茂铁从疏水性转变为亲水性, 使载药胶束完全解离, 由于PEI-Fc与DNA之间的静电作用, 使基因超分子组装体稳定存在, 显示出很好的氧化响应特性. 细胞培养结果表明, 表面带正电荷的共负载微载体易被HepG2细胞内吞, 并可转染, 且随着DOX的释放逐渐杀死HepG2肝癌细胞, 为安全稳定、 具有刺激响应的药物与基因共负载微载体的制备提供了可行的途径.  相似文献   

5.
A photofunctionalized square bipyramidal DNA nanocapsule (NC) was designed and prepared for the creation of a nanomaterial carrier. Photocontrollable open/close system and toehold system were introduced into the NC for the inclusion and release of a gold nanoparticle (AuNP) by photoirradiation and strand displacement. The reversible open and closed states were examined by gel electrophoresis and atomic force microscopy (AFM), and the open behavior was directly observed by high‐speed AFM. The encapsulation of the DNA‐modified AuNP within the NC was carried out by hybridization of a specific DNA strand (capture strand), and the release of the AuNP was examined by addition of toehold‐containing complementary DNA strand (release strand). The release of the AuNP from the NC was achieved by the opening of the NC and subsequent strand displacement.  相似文献   

6.
A series of physiological barriers have impeded nanoparticle-based drug formulations (NDFs) from reaching their targeted sites and achieving therapeutic outcomes. In this study, we develop size-controllable stealth doxorubicin-loaded nanodrug coated with CD47 peptides (DOX/sNDF-CD47) based on supramolecular chemistry to overcome multiple biological barriers. The smart DOX/sNDF-CD47 can efficiently decrease sequestration by macrophages and disassemble into poly(amidoamine) dendrimers with nuclear localization sequences (DOX/PAMAM-NLS) in the presence of matrix metalloproteinase-2 (MMP-2). Such structure transformation endows DOX/sNDF-CD47 with the ability of deep penetration in multicellular tumor spheroid, lysosomal escape, and nucleus localization, resulting in excellent cytotoxicity and drug resistance combating. In vivo experiments further confirmed that DOX/sNDF-CD47 has good tumor-targeting ability and can significantly improve therapeutic efficacy of DOX on xenograft tumor model. The ability to overcome multiple biological barriers makes sNDF-CD47 a promising NDFs to treat cancer expressing MMP-2 and combating drug resistance.  相似文献   

7.
通过EDC/NHS偶联反应将疏水性肝靶向小分子甘草次酸(GA)连接到天然多糖海藻酸钠(ALG)上,制备了具有双亲性肝靶向药物载体材料(GA-ALG).采用乳化法对广谱抗癌药物阿霉素(DOX)进行包载,得到肝靶向载药纳米粒子( DOX/GA-ALG NPs).利用单光子发射型计算机断层成像技术(SPECT)和药物体内分布...  相似文献   

8.
《中国化学快报》2020,31(6):1427-1431
A novel amphiphilic cationic block copolymer polylysine-b-polyphenylalanine(PLL-b-PPhe) was synthesized and self-assembled into micelles in aqueous solution,then shielded with poly(glutamic acid)(marked as PG/PLL-b-PPhe) to codeliver gene and drug for combination cancer therapy.Here,doxorubicin(DOX) was selected to be loaded into PLL-b-PPhe micelles and the drug loading efficiency was 8.0%.The drug release studies revealed that the PLL-b-PPhe micelles were pH sensitive and the released DOX could reach to 53.0%,65.0%,72.0% at pH 7.4,6.8 and 5.0,respectively.In order to reduce positive charge and cytotoxicity of PLL-b-PPhe micelles,PG was used as shelding,simultaneously condensed with Bcl2 siRNA to form gene carrier system.Compared with PEI,PG/PLL-b-PPhe had excellent gene transfection efficiency,especially when the molar ratio of PLL to PPhe was 30:60 and the mixed mass ratio of PLL-b-PPhe to gene was 5:1.More importantly,DOX and Bcl2 siRNA gene codelivery system displayed remarkable cytotoxicity against B16 F10 cells.Confocal laser scanning microscopy(CLSM) and flow cytometry were used to characterize endocytosis of the codelivery system,and confirmed that both DOX and Bcl2 siRNA had been endocytosed into B16 F10 cells.The above results indicated that gene and drug codelivery was a promising strategy in future cancer therapy.  相似文献   

9.
In this study, the formation of supramolecular inclusion complex of doxorubicin (DOX), a high loading and pH-dependent delivery of DOX on β-CD dendrimer was studied. β-cyclodextrin (β-CD) dendrimer having β-CD in both periphery and core was prepared with entrapment efficiency using click reaction. The encapsulation property of the β-CD-dendrimer was investigated by DOX as model drug. The chemical construction of β-CD-dendrimer was described by 1H NMR, 13C NMR and FTIR and its inclusion complex construction was studied by FTIR, DSC, SEM, and DLS techniques. It was confirmed that β-CD dendrimer able to encapsulate DOX in solution; as a result, the designed complex revealed pH-dependent sustained release of DOX, in vitro. Also, the in vitro outcomes on T47D cells displayed that complexation of DOX with β-CD dendrimer involved an improvement of in vitro cytotoxicity and anticancer activity and this data appeared to be as a result of the developed solubility of the DOX.  相似文献   

10.
Programmable assembly of gold nanoparticle superstructures with precise spatial arrangement has drawn much attention for their unique characteristics in plasmonics and biomedicine. Bio-inspired methods have already provided programmable, molecular approaches to direct AuNP assemblies using biopolymers. The existing methods, however, predominantly use DNA as scaffolds to directly guide the AuNP interactions to produce intended superstructures. New paradigms for regulating AuNP assembly will greatly enrich the toolbox for DNA-directed AuNP manipulation and fabrication. Here, we developed a strategy of using a spatially programmable enzymatic nanorobot arm to modulate anisotropic DNA surface modifications and assembly of AuNPs. Through spatial controls of the proximity of the reactants, the locations of the modifications were precisely regulated. We demonstrated the control of the modifications on a single 15 nm AuNP, as well as on a rectangular DNA origami platform, to direct unique anisotropic AuNP assemblies. This method adds an alternative enzymatic manipulation to DNA-directed AuNP superstructure assembly.  相似文献   

11.
This report describes a novel diagnostic assay for rapid detection of the Panton-Valentine Leukocidin (PVL) toxin of methicillin-resistant Staphylococcus aureus (MRSA) utilizing resistive pulse sensing (RPS), loop-mediated isothermal DNA amplification (LAMP) in combination with gold nanoparticles (AuNPs). The PVL DNA from MRSA was specifically amplified by LAMP using four primers at one temperature (65 °C). The DNA products with biotin were then conjugated to a first AuNP1 (55 ± 2 nm) through biotin–avidin binding. A second AuNP2 (30 ± 1.5 nm) coated with a specific DNA probe hybridized with the LAMP DNA products at the loop region to enhance assay sensitivity and specificity, to generate supra-AuNP1-DNA-AuNP2 assemblies. Scanning electron microscopy confirmed the presence of these supra-assemblies. Using RPS, detection and quantitation of the agglomerated AuNPs were performed by a tunable fluidic nanopore sensor. The results demonstrate that the LAMP-based RPS sensor is sensitive and rapid for detecting the PVL DNA. This technique could achieve a limit of detection (LOD) up to about 500 copies of genomic DNA from the bacteria MRSA MW2 and the detection can be completed within two hours with a straightforward signal-to-readout setup. It is anticipated that this LAMP-based AuNP RPS may become an effective tool for MRSA detection and a potential platform in clinical laboratory to report the presence or absence of other types of infectious agents.  相似文献   

12.
刘志勇 《高分子科学》2017,35(8):924-938
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.  相似文献   

13.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

14.
Hyperglycemia is an important factor for chemoresistance of hepatocellular carcinoma patients with diabetes to therapeutics. In the present study, a series of selenadiazole derivatives have been rationally designed, synthesized, and found be able to antagonize drug resistance in HepG2 cells to doxorubicin (DOX) under simulated diabetes conditions. Hyperglycemia could promote the cell proliferation through upregulation of ERK and AKT phosphorylation. However, the synthetic selenadiazole derivatives effectively potentiated the cellular uptake of DOX and enhanced the antiproliferative activity of DOX on HepG2 cells by induction of apoptosis, via regulation of ROS‐mediated AMPK activation, inhibition of mTORC1, and an increase in DNA damage. The selenadiazole derivatives that possess an increased lipophilicity could enhance the cellular uptake and anticancer efficacy of DOX. Taken together, this study provides a rational design strategy of selenadiazole derivatives to overcome hyperglycemia‐induced drug resistance.  相似文献   

15.
Herein, we report on the design of a programmable DNA ribbon using long‐chain DNA molecules with a user‐defined repetitive padlock sequence. The DNA ribbon can be further combined with gold nanoparticles (AuNPs) to create a composite nanomaterial that contains an AuNP core and a high‐density DNA crown carrying a cancer‐cell‐targeting DNA aptamer, a fluorescent tag for location tracking, and a cell‐killing drug. This composite material can be efficiently internalized by cancer cells and its cellular location can be tracked by fluorescence imaging. The system offers several attractive characteristics, including simple design, tunable DNA crown, high drug‐loading capacity, selective cell targeting, and pH‐sensitive drug release. These features make such a material a promising therapeutic agent.  相似文献   

16.
The fabrication of hierarchical magnetic nanomaterials with well‐defined structure, high magnetic response, excellent colloidal stability, and biocompatibility is highly sought after for drug‐delivery systems. Herein, a new kind of hollow‐core magnetic colloidal nanocrystal cluster (HMCNC) with porous shell and tunable hollow chamber is synthesized by a one‐pot solvothermal process. Its novelty lies in the “tunability” of the hollow chamber and of the pore structure within the shell through controlled feeding of sodium citrate and water, respectively. Furthermore, by using the ligand‐exchange method, folate‐modified poly(acrylic acid) was immobilized on the surface of HMCNCs to create folate‐targeted HMCNCs (folate‐HMCNCs), which endowed them with excellent colloidal stability, pH sensitivity, and, more importantly, folate receptor‐targeting ability. These assemblages exhibited excellent colloidal stability in plasma solution. Doxorubicin (DOX), as a model anticancer agent, was loaded within the hollow core of these folate‐HMCNCs (folate‐HMCNCs‐DOX), and drug‐release experiments proved that the folate‐HMCNCs‐DOX demonstrated pH‐dependent release behavior. The folate‐HMCNCs‐DOX assemblages also exhibited higher potent cytotoxicity to HeLa cells than free doxorubicin. Moreover, folate‐HMCNCs‐DOX showed rapid cell uptake apart from the enhanced cytotoxicity to HeLa cells. Experimental results confirmed that the synthesized folate‐HMCNCs are smart nanovehicles as a result of their improved folate receptor‐targeting abilities and also because of their combined pH‐ and magnetic‐stimuli response for applications in drug delivery.  相似文献   

17.
This study is aimed to develop a well‐defined ABC triblock terpolymer, poly(ethylethylene phosphate)‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (PEEP‐b‐PCL‐b‐PDMAEMA), for co‐encapsulating anticancer drug doxorubicin (DOX) and DNA to form polyplexes. The terpolymer is first synthesized via a combination of ring‐opening polymerization and atom‐transfer radical polymerization techniques, and characterized by 1H NMR and gel permeation chromatography. Subsequently, the self‐assembly behavior of the terpolymer and the micelles loaded with DOX or DNA are investigated by dynamic light scattering, ζ potential, transmission electron microscopy, and gel retardation assay, respectively. In vitro release study reveals that much more DOX is released at pH 5.0 than that at pH 7.4 in the same period. The simultaneous delivery of DOX and green fluorescent protein (GFP)‐labeled DNA is studied by a fluorescence microscope and the results demonstrate that both drug and GFP–DNA can be efficiently delivered into HeLa cells. This system presents a practical and promising carrier for the co‐delivery of drugs and genes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3005–3016  相似文献   

18.
Pluronic P123 was chain-extended at their terminal groups using atom transfer radical polymerization to form poly(acrylic acid) (PAA) tails and obtain the PAA-b-P123-b-PAA (P123-PAA) copolymer. The incorporation of PAA had the effect of increasing the carrier's drug loading capacity of an anti-cancer drug, Doxorubicin (DOX), and also allowed for pH-controlled release of the drug. Drug release assays showed that up to 60% of DOX cargo could be retained in the DOX/P123-PAA complex for 3 days at normal physiological pH (7.4). This was then followed by a secondary burst release of DOX when the environment became more acidic (pH 5). Therefore, it was possible that the more acidic physiological environment of tumor sites could be used to trigger an accelerated release of DOX from the drug carriers. The material was demonstrated for potential application in the delivery of cationic drugs for cancer treatment.  相似文献   

19.
Theranostic hyaluronic acid (HA) prodrug micelles with pH-responsive drug release and aggregation-induced emission (AIE) properties were prepared by chemical graft of biomimetic phosphorylcholine (PC), anticancer drug doxorubicin (DOX) and AIE fluorogen tetraphenylene (TPE) to the HA backbone. DOX was conjugated to the HA backbone by a hydrazone bond which can be hydrolyzed under acidic environment and result in pH-triggered smart release of DOX. The TPE units with typical AIE characteristics were applied for real time drug tracking in cancer cells. The HA-based prodrugs could self-assemble into micelles in aqueous solution as confirmed by the dynamic light scattering (DLS) and transmission electron microscopy (TEM). The intracellular distribution of HA prodrug micelles could be clearly observed by fluorescence microscopy based on the strong fluorescence of TPE. Moreover, after treated with the micelles, stronger fluorescence of TPE in CD44 overexpressed MDA-MB-231 cancer cells was observed, compared to the CD44 negative cell line, NIH3T3 cells, suggesting efficient cell uptake of HA prodrug micelles by receptor-mediated endocytosis. The cell viability results indicated that the prodrug micelles could inhibit the proliferation of the cancer cells effectively. Such pH-triggered theranostic drug delivery system with AIE features can provide a new platform for targeted and image-guided cancer therapy.  相似文献   

20.
Four types of drug nanoparticles (NPs) based on amphiphilic hyperbranched block copolymers were developed for the delivery of the chemotherapeutic doxorubicin (DOX) to breast cancer cells. These carriers have their hydrophobic interior layer composed of the hyperbranched aliphatic polyester, Boltorn® H30 or Boltorn® H40, that are polymers of poly 2,2‐bis (methylol) propionic acid (bis‐MPA), while the outer hydrophilic shell was composed of about 5 poly(ethylene glycol) (PEG) segments of 5 or 10 kDa molecular weight. A chemotherapeutic drug DOX, was further encapsulated in the interior of these polymer micelles and was shown to exhibit a controlled release profile. Dynamic light scattering and transmission electron microscopy analysis confirmed that the NPs were uniformly sized with a mean hydrodynamic diameter around 110 nm. DOX‐loaded H30‐PEG10k NPs exhibited controlled release over longer periods of time and greater cytotoxicity compared with the other materials developed against our tested breast cancer cell lines. Additionally, flow cytometry and confocal scanning laser microscopy studies indicated that the cancer cells could internalize the DOX‐loaded H30‐PEG10k NPs, which contributed to the sustained drug release, and induced more apoptosis than free DOX did. These findings indicate that the H30‐PEG10k NPs may offer a very promising approach for delivering drugs to cancer cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号