首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
[Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) reacts with PMe2Ph in CH3CN to give the red cation [Ir(PMe2Ph)4]+. This complex in CH3CN reacts with H2 to give cis-[IrH2(PMe2Ph)4]+, but on reflux for 6 h in the absence of H2, it gives the first example of a cyclometallated PMe2Ph complex fac-[IrH(PMe2C6H4)(PMe2Ph)3]+, as shown by PMR spectroscopy and preliminary X-ray crystallographic data.  相似文献   

3.
A new iridium(III) complex showing intramolecular interligand pi-stacking has been synthesized and used to improve the stability of single-component, solid-state light-emitting electrochemical cell (LEC) devices. The pi-stacking results in the formation of a very stable supramolecularly caged complex. LECs using this complex show extraordinary stabilities (estimated lifetime of 600 h) and luminance values (average luminance of 230 cd m-2) indicating the path toward stable ionic complexes for use in LECs reaching stabilities required for practical applications.  相似文献   

4.
The synthesis and luminescence of four new iridium (III) diazine complexes (1-4) were investigated. HOMO and LUMO energy levels of the complexes were estimated according to the electrochemical performance and the UV-Vis absorption spectra, showing the pyrimidine complexes have a larger increase for the LUMO than the HOMO orbital in comparison with the pyrazine complexes. Several high-efficiency yellow and green OLEDs based on phosphorescent iridium (III) diazine complexes were obtained. The devices emitting yellow light based on 1 with turn-on voltage of 4.1 V exhibited an external quantum efficiency of 13.2% (power efficiency 20.3 lm/W), a maximum current efficiency of 37.3 cd/A. The electroluminescent performance for the green iridium pyrimidine complex of 3 is comparable to that of the iridium pyridine complex (PPY)2Ir(acac) (PPY = 2-phenylpyridine), which is among the best reported.  相似文献   

5.
A novel heteronuclear exchange-coupled complex [Cr(III)[(CN)Fe(III)((5)L)](3)(CN)(3)] containing a pentadentate blocking ligand (5)L was synthesized. The X-ray structure shows that a meridional isomer applies with inequivalent Fe(III) centers. The complex exhibits a thermally induced spin crossover along with the exchange coupling. M?ssbauer spectra indicate a spin transition between S = (1)/(2) and S = (5)/(2) states although a considerable amount of Fe(III) centers stays high-spin at T = 6 K. The magnetization, the magnetic susceptibility, and the M?ssbauer data were fitted in one run with a spin crossover model taking into account exchange interactions among all metal centers.  相似文献   

6.
Solid-state electrochemiluminescence of a novel iridium(Ⅲ) complex   总被引:2,自引:0,他引:2  
The solid-state ECL behavior of a water-insoluble bis-cyclometalated (pq)2Ir(N-phMA) complex is presented, in which pq is a 2-phenylquinoline anion and N-phMA is N-phenyl methacrylamide, a monoanionic bidentate ligand. The MWNTs/(pq)2Ir(N-phMA) film, MWNTs/Ru(bpy)3^2+ film and (pq)2Ir(N-phMA) directly modified glassy carbon electrode were fabricated; only the MWNTs/(pq)2Ir(N-phMA) film can produce steady ECL in the presence of tri-n-propylamine as a coreactant.  相似文献   

7.
The reaction of trans-IrCl(CO)L2 with pz?1 gives trans-Ir(pz-N)(CO)L2, where pzH is 3,5-dimethyl-, 3,5-dimethyl-4-nitro- or 3,5-bis(trifluoromethyl)-pyrazole, and L = PPh3. The nitrogen atom not involved in coordination can be protonated with HBF4 to give the corresponding [Ir(CO)L2(pzH-N]+ cation. The iridium(I) pyrazolates undergo oxidative addition, yielding Ir(H)2(pz-N)(CO)L2 species, while gaseous HCl cleaves the IrN bond, affording IrH(Cl)2(CO)L2. The iridium(I) derivatives can be obtained in several solid-state forms, each characterized by a slightly different CO stretching frequency. The presence of a monodentate pyrazolato ligand in trans-Ir(3,5-(CF3)2pz-N)(CO)L2, in the form with ν(CO) at 1975 cm?1, is supported also by an X-ray crystal structure determination. The compound crystallizes in the monoclinic system, space group P21/n, with cell dimensions a = 21.106(6), b = 19.700(5), c = 9.437(2) Å, and β = 94.34(2)° and Z = 4.  相似文献   

8.
A new tetranuclear compound containing Ru(II) and Ir(III) polypyridine subunits exhibits two independent emissions at room temperature, as a consequence of weak interchromophoric coupling; in contrast, at 77 K energy transfer from Ir-based chromophores to the Ru-based ones is quantitative.  相似文献   

9.
10.
The photophysical properties of the complex (L)Ir(ppy)(2)(+), where ppy = 2-phenylpyridine and L = 4,4'-(2,2'-bipyridine-5,5'-diylbis(ethyne-2,1-diyl))bis(N,N-dihexylaniline), have been investigated under one- and two-photon excitation conditions. In THF solution, the complex exhibits broad ground-state absorption with lambda(max) approximately 500 nm and weak photoluminescence with lambda(max) approximately 730 nm. Excitation of (L)Ir(ppy)(2)(+) at 355 nm produces a long-lived excited state (tau approximately 1 mus) that features a strong excited-state absorption in the near-infrared (lambda(max) approximately 875 nm, Deltaepsilon approximately 6.1 x 10(4) M(-1) cm(-1)). Photoluminescence and transient absorption studies of (L)Ir(ppy)(2)(+) carried out using 5 ns, 1064 nm pulsed excitation demonstrate that the same long-lived and strongly absorbing excited state can be efficiently produced by two-photon absorption. Solutions of the complex in THF display nonlinear absorption of 5 ns, 1064 nm pulses in a process that is believed to involve a combination of two-photon absorption and reverse saturable absorption.  相似文献   

11.
A nonemissive cyclometalated iridium(III) solvent complex, without conjugation with a cell-penetrating molecular transporter, [Ir(ppy)(2)(DMSO)(2)](+)PF(6)(-) (LIr1), has been developed as a first reaction-based fluorescence-turn-on agent for the nuclei of living cells. LIr1 can rapidly and selectively light-up the nuclei of living cells over fixed cells, giving rise to a significant luminescence enhancement (200-fold), and shows very low cytotoxicity at the imaging concentration (incubation time <10 min, LIr1 concentration 10 μM). More importantly, in contrast to the reported nuclear stains that are based on luminescence enhancement through interaction with nucleic acids, complex LIr1 as a nuclear stain has a reaction-based mode of action, which relies on its rapid reaction with histidine/histidine-containing proteins. Cellular uptake of LIr1 has been investigated in detail under different conditions, such as at various temperatures, with hypertonic treatment, and in the presence of metabolic and endocytic inhibitors. The results have indicated that LIr1 permeates the outer and nuclear membranes of living cells through an energy-dependent entry pathway within a few minutes. As determined by an inductively coupled plasma atomic emission spectroscopy (ICP-AEC), LIr1 is accumulated in the nuclei of living cells and converted into an intensely emissive adduct. Such novel reaction-based nuclear staining for visualizing exclusively the nuclei of living cells with a significant luminescence enhancement may extend the arsenal of currently available fluorescent stains for specific staining of cellular compartments.  相似文献   

12.
The reaction of Cr(Bztacn)(CN)3 (Bztacn is 1,4,7-trisbenzyl-1,4,7-triazacyclononane) with Ni(iPrtacn)Cl2 (iPrtacn is 1,4,7-trisisopropyl-1,4,7-triazacyclononane) affords a CrNi3 tetranuclear complex. Variable temperature and magnetization versus field measurements show a S = 9/2 ground state and an appreciable magnetic anisotropy with a negative D(9/2) value equal to -0.54 cm(-1). Magnetization studies on one single crystal using a micro-SQUID show a fast tunneling process at zero field at very low temperature.  相似文献   

13.
Schwartz KR  Mann KR 《Inorganic chemistry》2011,50(24):12477-12485
A system pairing the luminescent core of [Ir(ppy)(2)L(2)](+) (ppy = 2-phenylpyridine) with simple hydrazino ancillary ligands (L = N(2)H(4)) has been prepared for the direct optical detection of carbon dioxide (CO(2)). Silver-assisted and silver-free techniques were used for the successful introduction of N(2)H(4) into the [Ir(ppy)(2)Cl](2) coordination sphere at room temperature to give the corresponding biscyclometalated iridium(III) hydrazino species as either a CF(3)SO(3)(-) (OTf(-), 2a) or Cl(-) (2b) salt. The silver-free route was accomplished by the direct replacement of the ligated Cl(-) using a slight excess of hydrazine. The luminescence profile of the cationic iridium(III) hydrazino complex 2a (λ(max) = 501 nm) undergoes a red shift (λ(max) = 524 nm), accompanied by a change in the peak shape during exposure to CO(2) in solution. The spectral changes observed are attributed to the formation of the corresponding neutral carbazate species Ir(ppy)(2)(H(2)NNHCOO) (3) and are not consistent with protonation of the ligated hydrazine. Conversion of the hydrazino species to the carbazate species is solvent-dependent and irreversible. The hydrazino and carbazate species have been structurally characterized by single-crystal X-ray diffraction; both compounds exhibit long-lived and intense room temperature luminescence in solution with τ = 1.56 and 1.80 μs and φ(em) = 0.42 and 0.45, respectively.  相似文献   

14.
Summary The structure of [Ir(NCMe)3(NO)(PPh3)2][PF6]2 has been ] determined by x-ray methods. Crystals are orthorhombic, space groupPca 21 , witha = 21.753(14),b = 11.678(10),c = 18.474(12) Å and Z = 4. The structure has been solved from diffractometer data and refined by full-matrix leastsquares to R = 0.076 for 2776 observed reflections. The cation is a hexacoordinate and not a pentacoordinate species as expected. The extra acetonitrile molecule,trans to the nitrosyl ligand, is much more weakly bound to the metal atom [Ir-N 2.360(26) against 1.965(20) and 1.912(14) Å for the other two acetonitriles]. The nitrosyl is bent [Ir-N-O 111(1)° Å] and acts as the formally one-electron donor NO.  相似文献   

15.
In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.  相似文献   

16.
Chen H  Zhao Q  Wu Y  Li F  Yang H  Yi T  Huang C 《Inorganic chemistry》2007,46(26):11075-11081
A new homocysteine-selective sensor based on the iridium(III) complex Ir(pba)2(acac) (Hpba = 4-(2-pyridyl)benzaldehyde; acac = acetylacetone) was synthesized, and its' photophysical properties were studied. Upon the addition of homocysteine (Hcy) to a semi-aqueous solution of Ir(pba)2(acac), a color change from orange to yellow and a luminescent variation from deep red to green were evident to the naked eye. The blue-shift of the absorption spectrum and enhancement of the phosphorescence emission upon the addition of Hcy can be attributed to the formation of a thiazinane group by selective reaction of the aldehyde group of Ir(pba)2(acac) with Hcy, which was confirmed by 1H NMR studies. Importantly, Ir(pba)2(acac) shows uniquely luminescent recognition of Hcy over other amino acids (including cysteine) and thiol-related peptides (reduced glutathione), in agreement with the higher luminescent quantum yield of the adduct of Ir(pba)2(acac) with Hcy (0.038) compared with that of the adduct with Cys (~0.002). Both surface charge analysis and the electrochemical measurement indicated that a photoinduced electron-transfer process for Ir(pba)2(acac)-Cys might be responsible for the high specificity of Ir(pba)2(acac) toward Hcy over Cys.  相似文献   

17.
18.
Abstraction of iodide from Ir(CF3)ClI(CO)(PPh3)2 (1) by AgSbF6 in the presence of acetonitrile yields the cationic complex [Ir(CF3)Cl(MeCN)(CO)(PPh3)2]+ [SbF6] (2). The acetonitrile group of 2 is readily displaced, and 2 reacts with para-tolyl isocyanide to yield [Ir(CF3)Cl(CN-p-tolyl)(CO)(PPh3)2]+ [SbF6] (3). The addition of NaOMe to 3 results in the methoxyester complex Ir(CF3)(COOMe)Cl(CN-p-tolyl) (PPh3)2 (4). The acetonitrile ligand of 2 is also displaced by anions, including H. Thus, 2 reacts with LiEt3BH to give Ir(CF3)HCl(CO)(PPh3)2 (5), in which the hydrido and trifluoromethyl ligands are mutually trans. In contrast, the addition of excess NaBH4 to 2 affords the novel dihydrido complex trans-Ir(CF3)H2(CO)(PPh3)2 (6). Investigations into the potential use of 5 and 6 as precursors of an iridium(I) complex such as Ir(CF3)(CO)(PPh3)2 are also described.  相似文献   

19.
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex.  相似文献   

20.
The electrochemical behaviour of [Ir(bipy)2Cl2]+ and [Ir(phen)2Cl2]+ (bipy = 2,2′-bipyridine; phen = 1,10-phenanthroline) has been investigated in N,N-dimethylformamide (DMF). In potential sweep voltammetry [Ir(bipy)2Cl2]+ exhibits four reduction peaks. The first two processes involve one electron and are reversible in our conditions. The third reduction step is irreversible and has been attributed to the addition of three electrons to [Ir(bipy)2Cl2]+ followed by fast liberation of ligands. The data obtained for the fourth peak are consistent with a one-electron reversible process. The behaviour of [Ir(phen)2Cl2]+ is more complicated than that found for the bipy complex. In this case in fact, in addition to the four peaks observed in the case of the bipy complex, two other peaks appear. The latter have been attributed to the reduction of phen molecules liberated by the reduction of the complex. A qualitative MO discussion of the nature of the molecular levels involved in the reduction processes is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号