首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Solid State Electrochemistry - In this work, un-doped and Mn-doped TiO2 nanorod (NR) array films were successfully prepared by hydrothermal method that deposited on FTO substrate at...  相似文献   

2.
3.
ABSTRACT

In this study, By hydrothermal reaction, we prepared ZnO nanorod array of high aspect ratio with different growth time. The prepared ZnO nanorod array was on one side of the liquid crystal cell, the another side of the liquid crystal cell is ITO-glass, then the ZnO nanorod array/liquid crystal composite was injected into the liquid crystal cell. Experimental results showed that the bandwidth of the reflection spectrum of the ZnO nanorod array/liquid crystal composite system was wider than the system without ZnO nanorod array. In addition, effects of polymerisation temperatures and the length of ZnO nanorod array on the broad-band reflection of N*-LC composite films were systematically investigated.  相似文献   

4.
5.
Highly crystalline and ordered mesoporous TiO2 thin films have been synthesized by stabilization of the mesostructure with confined carbon; the films exhibit 2.5% photoconversion efficiency for the water photolysis at zero-bias and Xe lamp illumination of 40 mW cm(-2).  相似文献   

6.
7.
The preparation of amorphous TiO2 film coupled with various metal-oxide semiconductors and their photocatalytic activities evaluated by photo-degradation of methylene blue and rhodamine B aqueous solution are briefly reviewed. The proposed photoreaction mechanism of the amorphous composite semiconductor and the differences between amorphous TiO2-based films and crystalline TiO2 photocatalytic materials in terms of preparation and usage are addressed. The inactive intrinsic amorphous TiO2 film coupled with various metal oxides were found to gain high photocatalytic activity. These dopants induce forming new energy levels in the band gap of TiO2 to enhance the charge separation of the photoinduced electrons and holes and extend the light absorption of TiO2-based photocatalytic films into the visible region. In addition, two different effects of coupling metal oxides have been proved: the introduction of oxides of W, Cr, V, Ag, and Mo can significantly increase the photo-reactivity of amorphous TiO2 film, while the combination of oxides of Zr, Sn, Sb, Cu, Ta, Fe, and Ni cannot affect the inactivity of pure amorphous TiO2 film.  相似文献   

8.
Taking benefit of previously obtained results, stable complex organic-inorganic hybrid suspensions are successfully prepared by mixing a polystyrene latex aqueous suspension, a titania hydrosol and a nonionic triblock copolymer. These suspensions can be then deposited as thin films on dense or porous substrates. Solvent evaporation induces the formation of spherical micelles by self-assembly of the amphiphilic molecules during the drying of the films. Two types of isolated spherical macropores (few ten nanometers) and mesopores (4-5 nm) are generated inside the layers by the thermal removal of the polystyrene particles and of the micelles, respectively. The remaining inorganic network exhibits an additional interconnected microporosity with a mean pore size of 1.5 nm, resulting from the aggregation of the anatase nanoparticles. A complete removal of the templating units at low temperature is possible using the photocatalytic properties of the anatase network. Such layers exhibit attractive properties for the design of ceramic membranes. They can be advantageously used in order to increase the permeability of the separative layer and to reduce the number of intermediate layers of these asymmetric structures.  相似文献   

9.
Wu  Liangpeng  Zhang  Mingyue  Li  Juan  Cen  Chaoping  Li  Xinjun 《Research on Chemical Intermediates》2016,42(5):4569-4580
Research on Chemical Intermediates - The three-dimensional (3D) TiO2 nanotube arrays (TNTA) were prepared by electrochemical anodization of Ti mesh in a mixed electrolyte solution of (NH4)2SO4 and...  相似文献   

10.
光催化反应发生在半导体材料的表面,材料表面的原子/电子结构直接影响光催化剂的活性或选择性。因此,发展具有特定晶面的半导体光催化剂受到各国学者的普遍关注,被认为是调控光催化材料性能的有效途径之一。自2008年yang等首次合成高表面能{001}晶面占优的锐钛矿TiO2单晶以来,控制合成暴露不同晶面TiO2晶体的研究得到了迅猛的发展,已发展了多种方法合成了具有不同晶面的TiO2晶体。研究表明,选择性地暴露特定的活性晶面能够显著地提高光催化剂的活性或者改变光催化反应的选择性。但是,含有完整晶面构型的TiO2单晶样品的颗粒尺寸一般都较大,通常为几微米,因而显著增加了光生载流子传输与分离的难度,并且导致材料较小的比表面积,限制了对光催化活性的进一步提高。能否在合成含特定晶面单晶的同时增加多孔结构成为有效解决这一问题的关键。最近, Crossland等采用晶种模板法成功合成了介孔的锐钛矿TiO2单晶,并且通过光电器件研究证实了采用该思路可进一步提高材料的光电性能。金红石TiO2在光催化全分解水方面具有独特的优势,然而关于多孔单晶金红石TiO2的研究相对较少,尤其是合成热力学不稳定的高表面能{111}晶面完全暴露的多孔金红石单晶面临较大的技术挑战因而一直未见文献报道。本文利用晶种模板法,以TiCl4溶液为含Ti前驱体、NaF为形貌控制剂、采用水热处理制备出不同比例{111}晶面的介孔金红石单晶。我们前期工作表明, NaF可作为形貌控制剂合成低表面能{110)晶面占优的介孔金红石单晶。本文发现,通过改变NaF的添加量,可有效调变{111}/{110}晶面比例,最终合成完全暴露{111}高表面能的介孔金红石TiO2单晶。扫描电镜结果显示,当添加20 mg NaF时,合成{110}占优的具有高长径比的介孔晶体;当NaF用量增加到40 mg时{110}晶面进一步缩短;至80 mg时则制备出{111})高能面完全暴露的金红石TiO2晶体。值得注意的是,对比研究表明,不采用模板合成了与多孔晶体完全相对应的不同{111}/(110}晶面比例的实心金红石晶体。透射电镜及选区电子衍射以及结合X射线衍射进一步证实,多孔的金红石TiO2晶体与实心金红石单晶均都为单晶结构,孔结构贯穿于样品内部且具有较高的晶面结晶性。氮气吸附实验发现,虽然三个不同晶面比例介孔金红石单晶样品间的形貌具有显著的差异,但比表面积非常相近(分别为24,25,28 m2/g),孔径也都为50 nm左右,该值与所用SiO2模板球的直径以及TEM观察结果相一致。光催化产氢性能结果表明,选择性的暴露活性晶面显著提高了光催化活性,仅含高能面{111}的介孔金红石单晶样品具有最高的产氢速率(约800μmol h–1 g–1),比常规{110}晶面占优的介孔单晶样品速率提高了约一倍。尤其比实心单晶样品的产氢速率提高了至少一个数量级,这应归结于介孔结构特性所导致的表面反应活性位增加、电子传输距离缩短以及光吸收增强协同作用的结果。  相似文献   

11.
12.
Multilayer films (PW(12)-TH)(n) (PW(12)=PW(12)O(40)(3-), TH=thionine) were immobilized on porous anatase TiO(2) microspheres by layer-by-layer (LbL) self-assembly method. The porous structure of TiO(2) was confirmed by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) showed that TiO(2) template particles had a round shape with an average diameter of 250 nm. The composite films were characterized by FTIR spectroscopy, UV diffuse reflectance spectroscopy and XRD spectroscopy. The results confirmed the successful immobilization of (PW(12)-TH)(n) composite films onto TiO(2) microspheres, and the growth of PW(12)-TH layer pair was uniform. SEM and TEM were also used to characterize the morphology. When PW(12)-TH composite films were assembled on the template, the surface became rougher with the increasing number of layer pair. The lattice fringe of TiO(2) became weaker when immobilized (PW(12)-TH)(n). The photocatalytic properties of the microspheres toward a rhodamine B (RhB) solution were investigated under visible light irradiation. The combination of TiO(2) and PW(12) showed an excellent photocatalytic performance. Both TH sensitization and PW(12) adsorption played important roles during the process of photocatalysis. Moreover, the catalytic property and reusability of as-prepared catalyst were relevant to the number of PW(12)-TH bilayer. The kinetics of the photodecomposition to rhodamine B followed the first-order reaction.  相似文献   

13.
Mesoporous TiO2/SiO2 composite nanofibers with a diameter of 100-200 nm and silica shell thickness of 5-50 nm have been fabricated by a sol-gel combined two-capillary co-electrospinning method; the composite nanofibers exhibited selective photocatalytic activity based on the decomposition of Methylene Blue, Active Yellow and Disperse Red.  相似文献   

14.
Thorough infiltration of CdS nanoparticles into spaces of titania nanorod and nanotube arrays was achieved by an ac electrodeposition technique to construct composite films of CdS over titania. The substrate affected not only the electrodeposition rate but also the oriented growth of CdS. A photocurrent much larger than the simple summation of those arising from the two component layers of CdS and titania was detected for both composite films under visible-light illumination. Such an enhancement in the photocurrent was even more prominent for the composite film based on the titania nanorod arrays, which was contributed to the higher charge separation rate arising from the nearly single-crystalline nanorods when compared with the polycrystalline nanotubes.  相似文献   

15.
Magnetron sputtering and gas aggregation source (GAS) approaches were combined for the preparation of columnar TiO2 structures decorated with PdO nanoparticles (NPs). The totally solvent-free synthesis approach provides good control of surface coverage, size, morphology, and stoichiometry of PdO NPs in comparison to wet chemical synthesis methods. X-ray photoelectron spectroscopy (XPS) analysis showed that the heat treatment led to the formation of a mixed oxide state PdO/PdO2 on the TiO2 layer. A steady equilibrium between PdO (oxidation by free and adsorbed ?OH) and PdO2 (reduced by trapped photogenerated electrons) phases under UV irradiation seems to provide an efficient electron-hole pair separation. Such robust PdO–TiO2 thin films have a strong potential for use as photocatalytic and self-cleaning windows or similar out-door technical surfaces.  相似文献   

16.
The present work reports the electrical properties of high-purity single-crystal TiO(2) from measurements of the electrical conductivity in the temperature range 1073-1323 K and in gas phases of controlled oxygen activities in the range 10(-13) to 10(5) Pa. The effect of the oxygen activity on the electrical conductivity indicates that oxygen vacancies are the predominant defects in the studied ranges of temperature and oxygen activities. The electronic and ionic lattice charge compensations were revealed at low and high oxygen activities, respectively. The determined semiconducting quantities include: the activation energy of the electrical conductivity (E(sigma) = 125-205 kJ.mol(-1)), the activation energies of the electrical conductivity components associated with electrons (E(n) = 218 kJ.mol(-1)), electron holes (E(p) = 34 kJ.mol(-1)), and ions (E(i) = 227 kJ.mol(-1)), and the enthalpy of motion for electronic defects (DeltaH(m) = 4 kJ/mol). The electrical conductivity data are considered in terms of the components related to electrons, holes, and ions. The obtained data allow the determination of the n-p demarcation line in terms of temperature and oxygen activities. The band gap determined from the electronic component of the electrical conductivity is 3.1 eV.  相似文献   

17.
The present work reports the thermoelectric power of high-purity single-crystal TiO(2) in the temperature range 1073-1323 K and in gas phases of controlled oxygen activities, p(O(2)), in the range 10(-13) to 7.5 x 10(4) Pa. The thermoelectric power versus log p(O(2)) dependence for strongly reduced TiO(2) at p(O(2)) < 10(-5) Pa may be approximated by a slope of 1/6, which is consistent with the defect disorder governed by electronic charge compensation of oxygen vacancies. The thermoelectric power data confirm that oxygen vacancies are the predominant ionic defects. These data indicate that TiO(2) at high p(O(2)) exhibits p-type properties. It is shown that the p(O(2)) related to the n-p transition increases with increase of temperature.  相似文献   

18.
Dual function of self-cleaning and antireflection can be created in double-layered TiO2-SiO2 nanostructured films. The film were prepared by (1) layer-by-layer deposition of multilayered SiO2 nanoparticles with polydiallyldimethylammonium (PDDA) cations, (2) layer-by-layer deposition of multilayered titanate nanosheets with polications on PDDA/SiO2 multilayer films, and (3) burning out the polymer and converting titanate nanosheets into TiO2 by hearing at 500 degrees C. The as-prepared films, consisting of a porous SiO2 bottom layer and a dense TiO2 top layer, improved the transmittance of glass or quartz substrates, as demonstrated by transmission spectra collected at normal incidence. The photocatalytic properties of the films were studied by the change of the water contact angle together with the decay of the IR absorption of the hydrocarbon chain of octadecylphosphonic-acid-modified films under 2.6 mW cm-2 UV illumination. Both the antireflective and the photocatalytic properties of the films were dependent on the number of PDDA/nanosheet bilayers deposited. however, excellent surface wettability of the films for water was obtained, independent of the preparation conditions. The experimental findings are discussed in terms of the special structure of the double-layered nanostructured film.  相似文献   

19.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   

20.
In this study, a polyacrylamide gel route was introduced to synthesize TiO2 nanoparticles. The influence of synthesis conditions on the properties of products was investigated. It is found that the samples prepared at the calcination temperature of 400 °C crystallize majorly in the anatase phase with a minor rutile phase. The second rutile phase has a dependence on the chelating agent, which is formed more readily when using acetic acid as the chelating agent. The introduction of acrylamide and glucose to the precursor solution shows the capability of improving the particle morphology, and the resulted particles are uniformly shaped like spheres. The photocatalytic activity of the prepared TiO2 samples was evaluated by the degradation of acid orange 7 under 254 nm ultraviolet irradiation, revealing that they exhibit a good photocatalytic activity. Ethanol was used as a ·OH scavenger to investigate its effect on the photocatalytic efficiency as well as the ·OH radical yields. Based on the experimental results, ·OH radical is suggested to be the dominant active species responsible for the dye degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号