首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report phosphorescent sensitized fluorescent near-infrared (NIR) light-emitting electrochemical cells (LECs) utilizing a phosphorescent cationic transition metal complex [Ir(ppy)(2)(dasb)](+)(PF(6)(-)) (where ppy is 2-phenylpyridine and dasb is 4,5-diaza-9,9'-spirobifluorene) as the host and two fluorescent ionic NIR emitting dyes 3,3'-diethyl-2,2'-oxathiacarbocyanine iodide (DOTCI) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as the guests. Photoluminescence measurements show that the host-guest films containing low guest concentrations effectively quench host emission due to efficient host-guest energy transfer. Electroluminescence (EL) measurements reveal that the EL spectra of the NIR LECs doped with DOTCI and DTTCI center at ca. 730 and 810 nm, respectively. Moreover, the DOTCI and DTTCI doped NIR LECs achieve peak EQE (power efficiency) up to 0.80% (5.65 mW W(-1)) and 1.24% (7.84 mW W(-1)), respectively. The device efficiencies achieved are among the highest reported for NIR LECs and thus confirm that phosphorescent sensitized fluorescence is useful for achieving efficient NIR LECs.  相似文献   

2.
We study the influence of the carrier injection efficiency on the performance of light-emitting electrochemical cells (LECs) based on a hole-preferred transporting cationic transition metal complex (CTMC) [Ir(dfppz)(2)(dtb-bpy)](+)(PF(6)(-)) (complex 1) and an electron-preferred transporting CTMC [Ir(ppy)(2)(dasb)](+)(PF(6)(-)) (complex 2) (where dfppz is 1-(2,4-difluorophenyl) pyrazole, dtb-bpy is 4,4'-di(tert-butyl)-2,2'-bipyridine, ppy is 2-phenylpyridine and dasb is 4,5-diaza-9,9'-spirobifluorene). Experimental results show that even with electrochemically doped layers, the ohmic contacts for carrier injection could be formed only when the carrier injection barriers were relatively low. Thus, adding carrier injection layers in LECs with relatively high carrier injection barriers would affect carrier balance and thus would result in altered device efficiency. Comparison of the device characteristics of LECs based on complex 1 and 2 in various device structures suggests that the carrier injection efficiency of CTMC-based LECs should be modified according to the carrier transporting characteristics of CTMCs to optimize device efficiency. Hole-preferred transporting CTMCs should be combined with an LEC structure with a relatively high electron injection efficiency, while a relatively high hole injection efficiency would be required for LECs based on electron-preferred transporting CTMCs. Since the tailored carrier injection efficiency compensates for the unbalanced carrier transporting properties of the emissive layer, the carrier recombination zone would be located near the center of the emissive layer and exciton quenching near the electrodes would be significantly mitigated, rendering an improved device efficiency approaching the upper limit expected from the photoluminescence quantum yield of the emissive layer and the optical outcoupling efficiency from a typical layered light-emitting device structure.  相似文献   

3.
The ligands 4-methylthio-6-phenyl-2,2'-bipyridine (1) and the corresponding sulfoxide (2) and sulfone (3) have been synthesized and characterized in solution, and in the solid state by single crystal X-ray diffraction. Compounds 2 and 3 crystallize in the same space group (C2/c) with similar unit cell parameters; a small increase in the unit cell volume allows for the presence of the extra oxygen atom in 3. The sulfoxide and sulfone groups adopt conformations that permit intramolecular OHC(aryl) hydrogen bonds. The complexes [Ir(ppy)(2)L][PF(6)] with L = 1, 2 or 3 have been prepared and characterized. The asymmetric sulfur atom in ligand 2 gives rise to pairs of diastereoisomers of the complex which can be distinguished in the (1)H and (13)C NMR spectra. In solution, exchange of [PF(6)](-) by [Δ-TRISPHAT](-) gives rise to four diastereoisomers and we observed good dispersion of (1)H NMR resonances, especially for those assigned to protons close to the asymmetric sulfur atom. A single crystal X-ray diffraction study of 2{[Ir(ppy)(2)(3)][PF(6)]}·CHCl(3)·3H(2)O reveals that the complex crystallizes in the chiral space group P2(1)2(1)2(1), the asymmetric unit containing crystallographically independent Δ- and Λ-[Ir(ppy)(2)(3)](+) cations. This provides a rare example of a so-called kryptoracemate in the solid state. In MeCN solution, [Ir(ppy)(2)(1)][PF(6)], [Ir(ppy)(2)(2)][PF(6)] and [Ir(ppy)(2)(3)][PF(6)] are weakly emissive (λ(em) = 600, 647 and 672 nm, respectively) and preliminary studies of the electroluminescent properties of [Ir(ppy)(2)(2)][PF(6)] indicate that the complexes are not suitable candidates for LECs.  相似文献   

4.
Three cationic iridium complexes containing 4,7-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,10-phenanthroline (L(1)) and 4,7-bis(3',6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3,9'-bi(9H-carbazol)-9-yl)-1,10-phenanthroline (L(2)) as the ancillary ligands, namely, [Ir(ppy)(2)(L(1))]PF(6) (1), [Ir(ppy)(2)(L(2))]PF(6) (2) and [Ir(oxd)(2)(L(2))]PF(6) (3) (ppy is 2-phenylpyridine, oxd is 2,5-diphenyl-1,3,4-oxadiazole), have been designed and prepared. With more intramolecular rotational units on the ancillary ligand (L(2)), 2 and 3 possess a unique aggregation-induced phosphorescent emission (AIPE) property. This phenomenon was unprecedentedly observed in the cationic iridium(III) complexes. In order to investigate the underlying mechanism of this AIPE behavior, their photophysical, temperature-dependent aggregation properties as well as theoretical calculations, were performed. The results suggest that restricted intramolecular rotation is responsible for the AIPE of cationic complexes. Moreover, photoluminescent quantum yields in the neat film, thermal stabilities and off/on luminescence switching of 2 were investigated, revealing its potential application as a candidate for LECs and organic vapor sensing.  相似文献   

5.
We report a significant decrease in turn‐on times of light‐emitting electrochemical cells (LECs) by tethering imidazolium moieties onto a cationic Ir complex. The introduction of two imidazolium groups at the ends of the two alkyl side chains of [Ir(ppy)2(dC6‐daf)]+(PF6)? (ppy=2‐phenylpyridine, dC6‐daf=9,9′‐dihexyl‐4,5‐diazafluorene) gave the complex [Ir(ppy)2(dC6MIM‐daf)]3+[(PF6)?]3 (dC6MIM‐daf=9,9‐bis[6‐(3‐methylimidazolium)hexyl]‐1‐yl‐4,5‐diazafluorene). Both complexes exhibited similar photoluminescent/electrochemical properties and comparable electroluminescent efficiencies. The turn‐on times of the LECs based on the latter complex, however, were much lower than those of devices based on the former. The improvement is ascribed to increased concentrations of mobile counterions ((PF6)?) in the neat films and a consequent increase in neat‐film ionic conductivity. These results demonstrate that the technique is useful for molecular modifications of ionic transition‐metal complexes (ITMCs) to improve the turn‐on times of LECs and to realize single‐component ITMC LECs compatible with simple driving schemes.  相似文献   

6.
We measure the potential profiles of both dynamic and fixed junction planar light-emitting electrochemical cells (LECs) using Scanning Kelvin Probe Microscopy (SKPM) and compare the results against models of LEC operation. We find that, in conventional dynamic junction LECs formed using lithium trifluoromethanesulfonate (LiTf), poly(ethylene oxide) (PEO), and the soluble alkoxy-PPV derivative poly[2-methoxy-5-(3',7'-dimethyl-octyloxy)-p-phenylenevinylene (MDMO-PPV), the majority (>90%) of the potential is dropped near the cathode with little potential drop across either the film or the anode/polymer interface. In contrast, when examining fixed junction LECs where the LiTf is replaced with [2-(methacryloyloxy)ethyl] trimethylammonium 2-(methacryloyloxy)ethane-sulfonate (METMA/MES), the potential is dropped at both contacts during the initial poling. The potential profile evolves over a period of approximately 60 min under bias to achieve a final profile similar to that obtained in the LiTf systems. In addition to elucidating the differences between conventional dynamic LECs and fixed LECs incorporating cross-linkable ion pair monomers, the results on both systems provide direct evidence for a primarily "p-type" LEC consistent with the emitting junction near the cathode and relatively small electric fields across the bulk of the device for these two material systems.  相似文献   

7.
The behavior of light-emitting electrochemical cells (LEC) based on solid films ( approximately 100 nm) of tris(2,2'-bipyridine)ruthenium(II) between an ITO anode and a Ga-In cathode was investigated. The response times were strongly influenced by the nature of the counterion: small anions (BF(4)(-) and ClO(4)(-)) led to relatively fast transients, while large anions (PF(6)(-), AsF(6)(-)) produced a slow time-response. From comparative experiments of cells prepared and tested in a glovebox to those in ambient, mobility of the anions in these films appears to be related to the presence of traces of water from atmospheric moisture. An electrochemical model is proposed to describe the behavior of these LECs. The simulation results agreed well with experimental transients of current and light emission as a function of time and show that the charge injection is asymmetric at the two electrodes. At a small bias, electrons are the major carriers, while for a larger bias the conduction becomes bipolar.  相似文献   

8.
Solid-state light-emitting electrochemical cells (LECs) have several advantages, such as low-voltage operation, compatibility with inert metal electrodes, large-area flexible substrates, and simple solution-processable device architectures. However, most of the studies on saturated red LECs show low or moderate device efficiencies (external quantum efficiency (EQE) <3.3 %). In this work, we demonstrate a series of five red-emitting cationic iridium complexes ( RED1- - RED5 ) with 2,2′-biquinoline ligands and test their electroluminescence (EL) characteristics in LECs. The Commission Internationale de l′Eclairage (CIE) 1931 coordinates for the LECs based on these complexes are all beyond the National Television System Committee (NTSC) red standard point (0.67, 0.33). The maximal EQE of the neat-film RED1 -based LECs reaches 7.4 %. The reddest complex, RED3 , is doped in the blue-emitting host complex, BG , to fabricate host–guest LECs. The maximal EQE of the host–guest LECs (1 wt % complex RED3 ) reaches 9.4 %, which is among the highest reported for the saturated red LECs.  相似文献   

9.
A series of mixed bis(μ-silylene) complexes of rhodium and iridium [RhIr(CO)(2)(μ-SiHR)(μ-SiR(1)R(2))(dppm)(2)] (R = R(1) = R(2) = Ph (4); R = R(1) = Ph, R(2) = Cl (5); R = R(1) = Ph, R(2) = Me (6); R = 3,5-C(6)H(3)F(2), R(1) = Ph, R(2) = Me (7); R = 3,5-C(6)H(3)F(2), R(1) = 2,4,6-C(6)H(2)Me(3), R(2) = H (8)) have been synthesized by the reaction of the silylene-bridged dihydride complexes, [RhIr(H)(2)(CO)(2)(μ-SiHR)(dppm)(2)] (1, R = Ph; 2, R = C(6)H(3)F(2)), with a number of secondary or primary silanes (Ph(2)SiH(2), PhClSiH(2), PhMeSiH(2), C(6)H(2)Me(3)SiH(3)). The influence of substituents and π-stacking interactions on the Si···Si distance (determined by X-ray crystallography) in this series and the implications regarding the nature of the Si···Si interactions are discussed. A series of novel (μ-silylene)/(μ-germylene) complexes, [RhIr(CO)(2)(μ-SiHPh)(μ-GePh(2))(dppm)(2)] (9) and [RhIr(CO)(2)(μ-SiR(1)R(2))(μ-GeHPh)(dppm)(2)] (R(1) = Ph, R(2) = H (11); R(1) = R(2) = Ph (12); R(1) = Ph, R(2) = Me (13)), have also been synthesized by reaction of the silylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-SiHPh)(dppm)(2)] (1), with 1 equiv of diphenylgermane and by reaction of the germylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-GeHPh)(dppm)(2)] (3), with 1 equiv of the respective silanes. These complexes have been characterized by multinuclear NMR spectroscopy and X-ray crystallography.  相似文献   

10.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

11.
The formation of advanced glycation end products (AGEs) has been considered to be a potential causative factor of injury to lens epithelial cells (LECs). Damage of LECs is believed to contribute to cataract formation. The purpose of this study was to investigate the cytotoxic effect of AGEs on LECs both in vitro and in vivo. We examined the accumulation of argpyrimidine, a methylglyoxal-derived AGE, and the expression of apoptosis-related molecules including nuclear factor- kappaB (NF-κB), Bax, and Bcl-2 in the human LEC line HLE-B3 and in cataractous lenses of Zucker diabetic fatty (ZDF) rats, an animal model of type 2 diabetes. In cataractous lenses from twenty-oneweek- old ZDF rats, LEC apoptosis was markedly increased, and the accumulation of argpyrimidine as well as subsequent activation of NF-κB in LECs were significantly enhanced. The ratio of Bax to Bcl-2 protein levels was also increased. In addition, the accumulation of argpyrimidine triggered apoptosis in methylglyoxal- treated HLE-B3 cells. However, the presence of pyridoxamine (an AGEs inhibitor) and pyrrolidine dithiocarbamate (a NF-κB inhibitor) prevented apoptosis in HLE-B3 cells through the inhibition of argpyrimidine formation and the blockage of NF-κB nuclear translocalization, respectively. These results suggest that the cellular accumulation of argpyrimidine in LECs is NF-κB-dependent and pro-apoptotic.  相似文献   

12.
Wu W  Fanwick PE  Walton RA 《Inorganic chemistry》1996,35(19):5484-5491
The reactions of the unsymmetrical, coordinatively unsaturated dirhenium(II) complexes [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)]Y (XylNC = 2,6-dimethylphenyl isocyanide; Y = O(3)SCF(3) (3a), PF(6) (3b)) with XylNC afford at least three isomeric forms of the complex cation [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+). Two forms have very similar bis(&mgr;-halo)-bridged edge-sharing bioctahedral structures of the type [(CO)BrRe(&mgr;-Br)(2)(&mgr;-dppm)(2)Re(CNXyl)(2)]Y (Y = O(3)SCF(3) (4a/4a'), PF(6) (4b/4b')), while the third is an open bioctahedron [(XylNC)(2)BrRe(&mgr;-dppm)(2)ReBr(2)(CO)]Y (Y = O(3)SCF(3) (5a), PF(6) (5b)). While the analogous chloro complex cation [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+) was previously shown to exist in three isomeric forms, only one of these has been found to be structurally similar to the bromo complexes (i.e. the isomer analogous to 5a and 5b). The reaction of 3a with CO gives the salt [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3) (7), in which the edge-sharing bioctahedral cation [(XylNC)BrRe(&mgr;-Br)(&mgr;-CO)(&mgr;-dppm)(2)ReBr(CO)](+) has an all-cis arrangement of pi-acceptor ligands. The Re-Re distances in the structures of 4b', 5a, and 7 are 3.0456(8), 2.3792(7), and 2.5853(13) ?, respectively, and accord with formal Re-Re bond orders of 1, 3, and 2, respectively. Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](PF(6))(0.78)(ReO(4))(0.22).CH(2)Cl(2) (4b') at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 19.845(4) ?, b = 16.945(5) ?, c = 21.759(3) ?, beta = 105.856(13) degrees, V = 7038(5) ?(3), and Z = 4. The structure was refined to R = 0.060 (R(w) = 0.145) for 14 245 data (F(o)(2) > 2sigma(F(o)(2))). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)]O(3)SCF(3).C(6)H(6) (5a) at 173 K: monoclinic space group P2(1)/n (No. 14) with a = 14.785(3) ?, b = 15.289(4) ?, c = 32.067(5) ?, beta = 100.87(2) degrees, V=7118(5) ?(3), and Z = 4. The structure was refined to R = 0.046 (R(w) = 0.055) for 6962 data (I > 3.0sigma(I)). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3).Me(2)CHC(O)Me (7) at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 14.951(2) ?, b = 12.4180(19) ?, c = 40.600(5) ?, beta = 89.993(11) degrees, V = 7537(3) ?(3), and Z = 4. The structure was refined to R = 0.074 (R(w) = 0.088) for 6595 data (I > 3.0sigma(I)).  相似文献   

13.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

14.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

15.
White electroluminescent (EL) emission from single-layered solid-state light-emitting electrochemical cells (LECs) based on host-guest cationic iridium complexes has been successfully demonstrated. The devices show white EL spectra (Commission Internationale de l'Eclairage coordinates ranging from (x, y) = (0.45, 0.40) to (0.35, 0.39) at 2.9-3.3 V with high color rendering indices up to 80. Peak external quantum efficiency and peak power efficiency of the white LEC reach 4% and 7.8 lm/W, respectively. These results suggest that white LECs based on host-guest cationic transition metal complexes may be a promising alternative for solid-state lighting technologies.  相似文献   

16.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

17.
The syntheses, structural characterization, and magnetic behavior of the three new polynuclear copper(II) complexes with formulas [Cu(4)(eta(2):mu-CH(3)COO)(2)(mu-OH)(2)(mu-OH(2))(mu-bdmap)(2)](ClO(4))(2).H(2)O (1), [Cu(8)(NCO)(2)(eta(1):mu-NCO)(4)(mu-OH)(2)(mu(3)-OH)(2)(mu-OH(2))(3)(mu-bdmap)(4)](ClO(4))(2)x2H(2)O (2), and [Cu(9)(eta(1):mu-NCO)(8)(mu(3)-OH)(4)(OH(2))(2)(mu-bdmap)(4)](ClO(4))(2).4H(2)O (3), in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, are reported. Tetranuclear complex 1 crystallizes in the triclinic system, space group P, with unit cell parameters a = 12.160(1) A, b = 13.051(1) A, c = 13.235(1) A, alpha = 110.745(1) degrees , beta = 109.683(1) degrees , gamma = 97.014(1), and Z = 2. Octanuclear complex 2 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 26.609(1) A, b = 14.496(1) A, c = 16.652(1) A, beta = 97.814(1) degrees , and Z = 4, and nonanuclear complex 3 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 24.104(1) A, b = 13.542(1) A, c = 24.355(1) A, beta = 109.98(1) degrees , and Z = 4. The magnetic behavior of the three complexes has been checked showing strong antiferromagnetic coupling in all the cases.  相似文献   

18.
The carbon carbon coupling reaction by nucleophilic attack of (CO)(5)Cr(CN-CF=CF(2)) 1 by lithium or Grignard compounds 2a-i yields the isocyanide complexes (CO)(5)Cr(CN-CF=CF-R) 3a-i (a R = CH=CH(2), b R = CH=CF(2), c R = C≡CH, d R = C≡C-SiMe(3), e R = C≡C-Ph, f R = C≡C-C(6)F(4)OMe, g R = C≡C-C(6)H(3)(CF(3))(2), h R = C(6)F(5), i R = C(6)H(3)(CF(3))(2)) as mixtures of E and Z isomers. The dinuclear complexes 5a-c are obtained from the reaction of 1 with the dilithio or dimagnesium compound 4a-c as the Z,Z-, E,Z- and E,E-isomers, respectively. (CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)7 is obtained as a mixture of Z,Z-, Z,E- and E,E-isomers from (CO)(5)Cr(CN-CF=CF-C≡C-H 3d by Eglington-Glaser coupling. (CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)6 and (CO)(5)Cr(CN-CF=CF-C=C-C≡C-CF=CF-NC)Cr(CO)(5)7 react with octacarbonyldicobalt forming the cluster compounds Z,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] Z,Z-8, E,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] E,Z-8 and E,E-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] E,E-8 and Z,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] Z,Z-9, E,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] E,Z-9 and E,E-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] Z,Z-9, respectively. The crystal and molecular structures of E-3d, Z-3h, Z,Z-8, E,Z-8 and Z,Z-9 were elucidated by single-crystal X-ray crystallography.  相似文献   

19.
Huang JS  Leung SK  Zhou ZY  Zhu N  Che CM 《Inorganic chemistry》2005,44(11):3780-3788
Reaction of dioxoruthenium(VI) porphyrins [Ru(VI)(Por)O2] with arylimine HN=CPh2 in dichloromethane afforded bis(methyleneamido)ruthenium(IV) porphyrins [Ru(IV)(Por)(N=CPh2)2] for Por = 4-Cl-TPP and TMP; (methyleneamido)hydroxoruthenium(IV) porphyrins [Ru(IV)(Por)(N=CPh2)(OH)] for Por = TPP and TTP; and bis(arylimine)ruthenium(II) porphyrins [Ru(II)(Por)(HN=CPh2)2] for Por = 3,5-Cl2TPP and 3,5-(CF3)2TPP. In dichloromethane solution exposed to air, complex [Ru(II)(3,5-Cl2TPP)(HN=CPh2)2] underwent oxidative deprotonation to form [Ru(IV)(3,5-Cl2TPP)(N=CPh2)2]. The new ruthenium porphyrins were identified by 1H NMR, UV-vis, IR, and mass spectroscopy, along with elemental analysis. X-ray crystal structure determinations of [Ru(IV)(4-Cl-TPP)(N=CPh2)2], [Ru(IV)(TPP)(N=CPh2)(OH)], and [Ru(II)(3,5-(CF3)2TPP)(HN=CPh2)2] revealed the Ru-N(methyleneamido) or Ru-N(arylimine) distances of 1.897(5) A (average), 1.808(4) A, and 2.044(2) A (average), respectively.  相似文献   

20.
The reactions of [Rh(2)(DTolF)(2)(CH(3)CN)(6)][BF(4)](2) (1) (DTolF = N,N'-di-p-tolylformamidinate) with 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) proceed with substitution of CH(3)CN molecules to give products with the N-N ligands chelating in an equatorial-equatorial (eq-eq) fashion. Compound 1 reacts with 1 equiv of bpy to yield a mixture of [Rh(2)(DTolF)(2)(bpy)(CH(3)CN)(3)][BF(4)](2).(CH(3))(2)CO (2a) and [Rh(2)(DTolF)(2)(bpy)(CH(3)CN)(4)][BF(4)](2) (2b). Compound 2a crystallizes in the monoclinic space group P2(1)/n with a = 13.5856(2) A, b = 18.0402(2) A, c = 21.4791(3) A; alpha = 90 degrees, beta = 101.044(1) degrees, gamma = 90 degrees; V = 5167.27(12) A(3), Z = 4, R = 0.0531, and R(w) = 0.0948. Compound 2b crystallizes in the monoclinic space group P2(1)/n with a = 10.9339(2) A, b = 24.4858(1) A, c = 19.4874(3) A; alpha = 90 degrees, beta = 94.329(1) degrees, gamma = 90 degrees; V = 5202.38(13) A(3), Z = 4, R = 0.0459, and R(w) = 0.1140. The reaction of compound 1 with 2 equiv of bpy affords [Rh(2)(DTolF)(2)(bpy)(2)(CH(3)CN)][BF(4)](2) (3) which crystallizes in the monoclinic space group P2(1)/a with a = 19.4534(4) A, b = 13.8298(3) A, c = 19.8218(5) A; alpha = 90 degrees, beta = 109.189(1) degrees, gamma = 90 degrees; V = 5036.5(2) A(3), Z = 4, R = 0.0589, and R(w) = 0.0860. Compound 1 reacts with 1 equiv of phen to form [Rh(2)(DTolF)(2)(phen)(CH(3)CN)(3)][BF(4)](2).2C(2)H(5)OC(2)H(5) (4) which crystallizes in the triclinic space group P1macro with a = 12.6346(2) A, b = 13.5872(2) A, c = 19.0597(3) A; alpha = 71.948(1) degrees, beta = 73.631(1) degrees, gamma = 71.380(1) degrees; V = 2886.70(8) A(3), Z = 2, R = 0.0445, and R(w) = 0.1207. A notable feature of the cations in 2a, 3, and 4 is the presence of only one axial (ax) CH(3)CN ligand, a fact that can be attributed to the steric effect of the formamidinate bridging ligands. Compounds 2a, 2b, 3, and 4 were fully characterized by X-ray crystallography and (1)H NMR spectroscopy, whereas [Rh(2)(DTolF)(2)(phen)(2)(CH(3)CN)(2)][BF(4)](2) (5) was characterized by (1)H NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号