首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the photochemical behavior of single‐walled carbon nanotubes (SWNTs) in the presence of propylamine. The SWNTs are characterized by absorption and Raman spectroscopy. The spectral changes due to photoirradiation indicate that reactions occur predominantly with the metallic SWNTs and small‐diameter SWNTs. The detection of amine radicalcation species by ESR spectroscopy reveals photoinduced electron transfer from the amine to the excited SWNTs. After exposure of the photoirradiated SWNTs to air, the characteristic spectra were recovered, except for that of the small‐diameter SWNTs. The results suggest that, after photoreduction of the SWNTs, subsequent selective sidewall functionalization of the small‐diameter SWNTs occurs.  相似文献   

2.
Single-walled carbon nanotubes (SWNTs) are promising materials for in vitro and in vivo biological applications due to their high surface area and inherent near infrared photoluminescence and Raman scattering properties. Here, we use density gradient centrifugation to separate SWNTs by length and degree of bundling. Following separation, we observe a peak in photoluminescence quantum yield (PL QY) and Raman scattering intensity where SWNT length is maximized and bundling is minimized. Individualized SWNTs are found to exhibit high PL QY and high resonance-enhanced Raman scattering intensity. Fractions containing long, individual SWNTs exhibit the highest PL QY and Raman scattering intensities, compared to fractions containing single, short SWNTs or SWNT bundles. Intensity gains of approximately ~1.7 and 4-fold, respectively, are obtained compared with the starting material. Spectroscopic analysis reveals that SWNT fractions at higher displacement contain increasing proportions of SWNT bundles, which causes reduced optical transition energies and broadening of absorption features in the UV-Vis-NIR spectra, and reduced PL QY and Raman scattering intensity. Finally, we adsorb small aromatic species on "bright," individualized SWNT sidewalls and compare the resulting absorption, PL and Raman scattering effects to that of SWNT bundles. We observe similar effects in both cases, suggesting aromatic stacking affects the optical properties of SWNTs in an analogous way to SWNT bundles, likely due to electronic structure perturbations, charge transfer, and dielectric screening effects, resulting in reduction of the excitonic optical transition energies and exciton lifetimes.  相似文献   

3.
We provide definitive evidence for the mechanism of electronic detection of ammonia by monitoring in situ changes in the electrical resistance and optical spectra of films of poly(m-aminobenzenesulfonic acid)-functionalized SWNTs (SWNT-PABS). The increase of resistance during exposure to ammonia is associated with deprotonation of the PABS side chain that in turn induces electron transfer between the oligomer and the valence band of the semiconducting SWNTs. Near IR spectroscopy is used to demonstrate that the charge transfer is a weakly driven process, and this accounts for the high reversibility of the sensor. We show that the sensitivity of the chemiresistors increases as the film thickness is reduced to the percolation threshold and that the SWNT-PABS film thickness provides a simple means to enhance the electronic response.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) are now widely used in many fields, and while many analytical methods for SWNTs have been reported, there are few practical analytical methods that combine the necessary levels of selectivity and sensitivity. We have developed a highly sensitive separation method for fluorescence-derivatized SWNTs by means of conventional CE with laser-induced fluorescence. First, SWNTs were dispersed using a triphenylene derivative into the water, and the excess dispersant was removed by nitric acid treatment. The dispersed SWNTs were then derivatized with a fluorescence reagent, 4-aminofluorescein. Finally, the derivatized SWNTs were analyzed using a conventional apparatus CE-LIF detection. The SWNTs migrated within 20 min. The detection sensitivity of SWNTs was improved by about 170 times with LIF detection as compared with UV detection. We anticipate that the derivatized SWNTs can also be detected with high sensitivity using LC.  相似文献   

5.
Oxidized single‐walled carbon nanotubes (o‐SWNTs) were employed as the drug carriers to deliver the small molecules of Rhodamine123 (Rho123) into the K562 cells via physical adsorption. However, due to the fluorescence quenching of Rho123 on carbon nanotubes, the quantitative determination of Rho123 in cells is difficult. Based on the MEKC coupled with LIF detection, a quantitative approach was developed for the determination of Rho123 delivered into K562 cells by o‐SWNTs. Where the adsorbed Rho123 on o‐SWNTs could be desorbed by SDS in running buffer and be simultaneously separated with o‐SWNTs due to the differences of their electrophoretic mobility by applying the electric potential at the both ends of capillary. Using this approach, the intracellular uptakes of Rho123 in multidrug‐resistant and multidrug‐sensitive leukemia cells were quantified, and the results showed that o‐SWNTs could be used as the potential drug carriers to deliver small molecules into cells via the physical adsorption along with the circumventing of multidrug resistance of leukemia cells.  相似文献   

6.
Covalent sidewall addition to single-walled nanotubes (SWNTs) of a series of organolithium and organomagnesium compounds (nBuLi, tBuLi, EtLi, nHexLi, nBuMgCl, tBuMgCl) followed by reoxidation is reported. The functionalized R(n)-SWNTs were characterized by Raman and NIR emission spectroscopy. The reaction of SWNTs with organolithium and magnesium compounds exhibits pronounced selectivity: in general, metallic tubes are more reactive than semiconducting ones. The reactivity of SWNTs toward the addition of organometallic compounds is inversely proportional to the diameter of the tubes. This was determined simultaneously and independently for both metallic and semiconducting SWNTs. The reactivity also depends on the steric demands of the addend. Binding of the bulky t-butyl addend is less favorable than addition of primary alkyl groups. Significantly, although tBuLi is less reactive than, for example, nBuLi, it is less selective toward the preferred reaction with metallic tubes. This unexpected behavior is explained by fast electron transfer to the metallic SWNTs having low-lying electronic states close to the Fermi level, a competitive initial process. The NIR emission of weakly functionalized semiconducting SWNTs, also reported for the first time, implies interesting applications of functionalized tubes as novel fluorescent reporter molecules.  相似文献   

7.
The decoration of SWNTs with supramolecular motifs is a common strategy for their subsequent noncovalent functionalization. However, due to the lack of a standard methodology, there are no quantitative measurements showing the extent to which the supramolecular equilibria are affected by one of the host-guest couple being anchored to the SWNT. Here, we use a method we initially developed to quantify association of small organic molecules to the walls of SWNTs to compare association constants of two host-guest systems, a Hamilton receptor-cyanuric acid derivative and a crown ether-ammonium couple, in solution and when the host is covalently attached to the SWNTs. Our data show that association does occur, but the stability of the complexes is significantly affected, as reflected in a sizable reduction in their association constant, when compared to solution.  相似文献   

8.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

9.
The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.  相似文献   

10.
In this Communication, we have demonstrated a facile and effective approach to identify the structure of the superlong well-aligned single-walled carbon nanotubes (SWNTs) by the combination of electrodeposition of metal (Ag) with Raman spectroscopy. The suitable density and the visibility of the Ag-deposited long oriented nanotubes make it possible to acquire Raman spectra from isolated individual nanotubes very easily. The results reveal that the well-oriented SWNT arrays on SiO2/Si wafer fabricated by EtOH chemical vapor deposition using Fe/Mo nanoparticles as catalyst exhibit a low percentage of metallic SWNTs (5%). Among other SWNTs about 62.3% are semiconducting SWNTs, and a small amount of nanotubes are quasimetallic. About 32% are a so-called quasi-insulator, which is caused inevitably by the defects during growth. Furthermore, the structural uniformity of the long SWNTs can be also evaluated by the deposition of Ag along the length and Raman spectroscopy. This method also provides an approach to deposit other metals on long SWNTs, which could have various potential applications such as for use as sensors, etc. More importantly, this facile method can be applied to long SWNT arrays fabricated from other different catalytic systems so that the relationship between the growth conditions and the structures of SWNTs are expected to be ruled out.  相似文献   

11.
Here we demonstrate design, fabrication, and testing of electronic sensor array based on single-walled carbon nanotubes (SWNTs). Multiple sensor elements consisting of isolated networks of SWNTs were integrated into Si chips by chemical vapor deposition (CVD) and photolithography processes. For chemical selectivity, SWNTs were decorated with metal nanoparticles. The differences in catalytic activity of 18 catalytic metals for detection of H(2), CH(4), CO, and H(2)S gases were observed. Furthermore, a sensor array was fabricated by site-selective electroplating of Pd, Pt, Rh, and Au metals on isolated SWNT networks located on a single chip. The resulting electronic sensor array, which was comprised of several functional SWNT network sensors, was exposed to a randomized series of toxic/combustible gases. Electronic responses of all sensor elements were recorded and the sensor array data was analyzed using pattern-recognition analysis tools. Applications of these small-size, low-power, electronic sensor arrays are in the detection and identification of toxic/combustible gases for personal safety and air pollution monitoring.  相似文献   

12.
Protein electrochemistry using aligned carbon nanotube arrays   总被引:1,自引:0,他引:1  
The remarkable electrocatalytic properties and small size of carbon nanotubes make them ideal for achieving direct electron transfer to proteins, important in understanding their redox properties and in the development of biosensors. Here, we report shortened SWNTs can be aligned normal to an electrode by self-assembly and act as molecular wires to allow electrical communication between the underlying electrode and redox proteins covalently attached to the ends of the SWNTs, in this case, microperoxidase MP-11. The efficiency of the electron transfer through the SWNTs is demonstrated by electrodes modified with tubes cut to different lengths having the same electron-transfer rate constant.  相似文献   

13.
张则尧  姚艺希  李彦 《物理化学学报》2022,38(8):2101055-86
单壁碳纳米管的直径可控生长是碳纳米管生长与应用领域的重要问题。直径在0.9–1.2 nm范围内的碳纳米管非常适合应用于近红外荧光生物成像领域和量子器件单光子光源之中。本文使用FeCo/MgO催化剂生长出了直径在这一范围内的体相单壁碳纳米管,并研究了催化剂制备和CVD生长条件对碳纳米管直径的影响。催化剂前驱体的制备是获得小尺寸催化剂颗粒的关键步骤。在浸渍过程中,使用难水解的金属硫酸盐作为前驱体、降低浸渍pH以及加入络合剂分子都会抑制溶液干燥过程中金属盐的水解,从而控制催化剂的尺寸,使其适合于生长出直径可控的单壁碳纳米管。在CVD生长过程中,使用乙醇作为碳源、使用较低的碳氢比例也有利于小直径碳纳米管的生长。  相似文献   

14.
Using first principles calculations, we report for the first time that large nearly neutral aromatic molecules, such as naphthalene and anthracene, and small charge-transfer aromatic molecules, such as TCNQ and DDQ, interact more strongly with metallic single-wall carbon nanotubes (SWNTs) versus their semiconducting counterparts as the molecular orientation of DDQ is taken into account. Hence two new mechanisms for separating metallic and semiconducting SWNTs via noncovalent pi-pi stacking or charge-transfer interaction are suggested.  相似文献   

15.
Many applications based on single-walled carbon nanotubes (SWNTs) require chemical modification of carbon nanotube to optimize the functionalities of the device. In this contribution we discuss the properties of SWNTs immersed in a hydrobromic acid (HBr) solution. Changes of atomic and electronic structures of bromine modified SWNTs were investigated using photoelectron spectroscopy (PES). Spectra of SWNTs before and after immersion in the HBr solution exhibit different features. To understand the mechanism of interaction between SWNTs and bromine, we performed density-functional theory calculations to reveal the structural changes, adsorption energy and chemical bonding information of SWNTs interacting with bromine. In addition, based on the Gelius model, from the molecular orbitals (MOs), we calculated ultraviolet photoelectron spectra (UPS) of SWNTs with and without functionalizing and compared them with the experiment. The present study is a first step in the understanding of the functionalization mechanism of carbon nanotubes.  相似文献   

16.
Micromold with microchannels was employed in assembly of directional free-standing single-walled carbon nanotube (SWNT) strings at room temperature. The new postgrowth assembly approach could, in principle, apply not only to a wide range of SWNTs in their soluble or dispersible forms, including small diameter (0.7-0.8 nm) SWNTs, covalent- and noncovalent-functionalized SWNTs, monodispersed SWNTs with identical diameter and chirality, and fullerenes@SWNTs, which either cannot survive the high-temperature treatment or cannot be synthesized by current CVD method, but also to other soluble or dispersible one-dimensional nanostructures.  相似文献   

17.
Single-walled carbon nanotubes (SWNTs), being hydrophobic by nature, aggregate in water to form large bundles. However, isolated SWNTs possess unique physical and chemical properties that are desirable for sensing and biological applications. Conventionally isolated SWNTs can be obtained by wrapping the tubes with biopolymers or surfactants. The binding modes proposed for these solubilization schemes, however, are less than comprehensive. Here we characterize the efficacies of solubilizing SWNTs through various types of phospholipids and other amphiphilic surfactants. Specifically, we demonstrate that lysophospholipids, or single-chained phospholipids offer unprecedented solubility for SWNTs, while double-chained phospholipids are ineffective in rendering SWNTs soluble. Using transmission electron microscopy (TEM) we show that lysophospholipids wrap SWNTs as striations whose size and regularity are affected by the polarity of the lysophospholipids. We further show that wrapping is only observed when SWNTs are in the lipid phase and not the vacuum phase, suggesting that the environment has a pertinent role in the binding process. Our findings shed light on the debate over the binding mechanism of amphiphilic polymers and cylindrical nanostructures and have implications on the design of novel supramolecular complexes and nanodevices.  相似文献   

18.
There is increasing interest in developing single-walled carbon nanotubes (SWNTs)-based optical biosensors for remote or in vitro and in vivo sensing because the near-IR optical properties of SWNTs are very sensitive to surrounding environmental changes. Many enzyme-catalyzed reactions yield hydrogen peroxide (H(2)O(2)) as a product. To our knowledge, there is no report on the interaction of H(2)O(2) with SWNTs from the optical sensing point of view. Here, we study the reaction of H(2)O(2) with an aqueous suspension of water-soluble (ws) HiPco SWNTs encased in the surfactant sodium dodecyl sulfate (SDS). The SWNTs are optically sensitive to hydrogen peroxide in pH 6.0 buffer solutions through suppression of the near-IR absorption band intensity. Interestingly, the suppressed spectral intensity of the nanotubes recovers by increasing the pH, by decomposing the H(2)O(2) into H(2)O and O(2) with the enzyme catalase, and by dialytically removing H(2)O(2). Preliminary studies on the mechanisms suggest that H(2)O(2) withdraws electrons from the SWNT valence band by charge transfer, which suppresses the nanotube spectral intensity. The findings suggest possible enzyme-assisted molecular recognition applications by selective optical detection of biological species whose enzyme-catalyzed products include hydrogen peroxide.  相似文献   

19.
A nanocomposite of poly(anilineboronic acid), a self-doped polyaniline, with ss-DNA-wrapped single-walled carbon nanotubes (ss-DNA/SWNTs) was fabricated on a gold electrode by in situ electrochemical polymerization of 3-aminophenylboronic acid monomers in the presence of ssDNA/SWNTs. We used this nanocomposite to detect nanomolar concentrations of dopamine and found that the sensitivity increased 4 orders of magnitude compared to the detection at an electrode modified with only poly(anilineboronic acid). For the first time, this work reports the multiple functions of the ss-DNA/SWNTs in the fabrication and biosensor application of a self-doped polyaniline/ss-DNA/SWNT nanocomposite. First, the ss-DNA/SWNTs acted as effective molecular templates during polymerization of self-doped polyaniline so that not only was the polymerization speed increased but also the quality of the polymer was greatly improved. Second, they functioned as novel active stabilizers after the polymerization, significantly enhancing the stability of the film. Furthermore, the ss-DNA/SWNTs also acted as conductive polyanionic doping agents in the resulting polyaniline film, which showed enhanced conductivity and redox activity. Finally, the large surface area of carbon nanotubes greatly increased the density of the functional groups available for sensitive detection of the target analyte. We envision that polyaniline with other functional groups as well as other conducting polymers may be produced for different targeted applications by this approach.  相似文献   

20.
Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号