首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The use of copper radioisotopes in imaging and therapy has prompted an increased interest in chelators which form stable copper complexes, such as Cu(II)-azamacrocyclic complexes. The effects of charge, stability and the size of the macrocyclic backbone of the Cu(II)-azamacrocyclic complexes on biological behavior have been evaluated. Here we report a reversed-phase high-performance liquid chromatography (HPLC) method to separate several Cu(II)-azamacrocyclic complexes, including Cu(II) complexes of 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A) and 4,10-bis(carboxymethyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (CB-DO2A). Absorbance at 280 nm was used to monitor the complexes as they eluted from the reversed-phase column. The effects of the concentration of the buffer, the pH of the buffered mobile phase and the concentration of the organic modifier, methanol, on the separation were investigated. Separation of these copper complexes by ion-pair HPLC with the use of a mass spectrometry-compatible ion-pair reagent, triethylammonium acetate, in the mobile phase at pH 6.3 is also presented. The reversed-phase chromatographic conditions utilized also allow the pK(a)s of Cu-TETA and the log(k'w) values of Cu-CB-TE2A, Cu-TETA and Cu-CB-DO2A to be estimated.  相似文献   

2.
The redox behaviour of copper(II) complexes with the open chain ligand, benzilbisthiosemicarbazone, and the macrocyclic one [3,4,10,11-tetraphenyl-1,2,5,8,9,12,13-octaazacyclotetradeca-7,14- dithione- 2,4,9,11-tetraene] has been explored by cyclic voltammetry. The half-wave potential values for the copper(II)/copper(I) redox couple and the spectral data obtained on dimethylsulfoxide (DMSO) solution agree with the superoxide dismutase (SOD)-mimetic activity of the complexes. The macrocyclic complexes show more positive reduction potential and more activity than the open chain derivatives. From our results it follows that the structure and conformation of ligand has influence on the redox potential of central atom in coordination compound. The changes in the coordination sphere are connected with the change of biological function of compounds represented by SOD-mimic activity. In addition, the L1H6 derivatives show quasireversible waves associated to Cu(II)/Cu(III) process.  相似文献   

3.
Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) l-alanine (ala), l-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N(2)O(2) donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, (1)H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300K and in frozen DMSO (77K) indicate the presence of the unpaired electron in the dx2-y2 orbital. The evaluated metal-ligand bonding parameters showed strong in-plane sigma- and pi-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.  相似文献   

4.
由于具有较好的催化性能,含过渡金属的酶一直备受研究者的关注.其中,铜作为生物体中含量仅次于铁和锌的过渡金属,在新陈代谢过程中发挥着重要作用.铜酶广泛存在于自然界中,该类生物大分子涉及电子转移、氧化还原、氧气的运输与活化等生物化学过程.多种铜酶在氧气活化方面表现出引人注目的 性质,例如:颗粒状甲烷单加氧酶(pMMO)、多...  相似文献   

5.
Bis(thiosemicarbazonato) complexes Cu(II)(Btsc) have attracted interest as promising metallodrugs and, in particular, as copper radiopharmaceuticals. Prototypes Cu(Atsm) and Cu(Gtsm) are membrane-permeable, but their metabolisms in cells are distinctly different: copper that is delivered by Cu(Gtsm) is trapped nonselectively in all cells, whereas copper that is delivered by Cu(Atsm) is retained selectively in hypoxic cells but is "washed out" readily in normal cells. We have studied copper-transfer reactions of these two complexes under various conditions, aiming to model their cellular chemistry. In Me2SO, both complexes exhibited reversible one-electron-reduction processes with Cu(Atsm) being more difficult to reduce than Cu(Gtsm) (E(1/2)'=-0.60 and -0.44 V, respectively, vs AgCl/Ag). Upon introduction of an aqueous buffer into Me2SO, the electrochemical reduction remained chemically reversible for Cu(Atsm) but became irreversible for Cu(Gtsm). However, the estimated difference in their reduction potentials did not change. Chromophoric ligand anions bicinchonate (Bca) and bathocuproine disulfonate (Bcs) were used as Cu(I) indicators to trace the destinations of copper in the reactions and to mimic cellular Cu(I)-binding components ("sinks"). While both BtscH2 ligands have high affinities for Cu(I) (KD in the picomolar range), they cannot compete with Cu(I) sinks such as the copper-binding proteins Atx1 and Ctr1c (or a mimic such as Bcs). In the presence of these proteins, reduction of Cu(II)(Btsc) leads to irreversible transfer of copper to the protein ligands. Endogenous reductants ascorbate and glutathione can reduce Cu(II)(Gtsm) in the presence of such protein ligands but cannot reduce Cu(II)(Atsm). These properties establish a strong correlation between the contrasting cellular retention properties of these complexes and their different reduction potentials. The endogenous reductants in normal cells appear to be able to reduce Cu(II)(Gtsm) but not Cu(II)(Atsm), allowing the latter to be washed out. The more reducing environment of hypoxic cells leads to reduction of Cu(II)(Atsm) and retention of its copper.  相似文献   

6.
Galactose oxidase (GO) is an enzyme that catalyzes two-electron oxidations. Its active site contains a copper atom coordinated to a tyrosyl radical, the biogenesis of which requires copper and dioxygen. We have recently studied the properties of electrochemically generated mononuclear Cu(II)-phenoxyl radical systems as model compounds of GO. We present here the solution chemistry of these ligands under various copper and dioxygen statuses: N(3)O ligands first chelate Cu(II), leading, in the presence of base, to [Cu(II)(ligand)(CH(3)CN)](+) complexes (ortho-tert-butylated ligands) or [(Cu(II))(2)(ligand)(2)](2+) complexes (ortho-methoxylated ligands). Excess copper(II) then oxidizes the complex to the corresponding mononuclear Cu(II)-phenoxyl radical species. N(2)O(2) tripodal ligands, in the presence of copper(II), afford directly a copper(II)-phenoxyl radical species. Addition of more than two molar equivalents of copper(II) affords a Cu(II)-bis(phenoxyl) diradical species. The donor set of the ligand directs the reaction towards comproportionation for ligands possessing an N(3)O donor set, while disproportionation is observed for ligands possessing an N(2)O(2) donor set. These results are discussed in the light of recent results concerning the self-processing of GO. A path involving copper(II) disproportionation is proposed for oxidation of the cross-linked tyrosinate of GO, supporting the fact that both copper(I) and copper(II) activate the enzyme.  相似文献   

7.
A series of five new copper(II) macrocyclic complexes have been synthesized by template condensation. The bonding and stereochemistry of the complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, UV-visible, EPR spectral studies and electrochemical properties. g-Values are calculated for all of the complexes in polycrystalline form as well as in DMSO solution. The magnetic and spectral data indicate square planar geometry for all the complexes. Cyclic voltammograms for all the complexes are similar and involve two quasi-reversible redox processes. Cu(II)Cu(II)<=>Cu(II)Cu(I)<=>Cu(I)Cu(I). Their biological properties have also been studied. The macrocyclic complexes show more anti-bacterial than controlled one. The anti-bacterial activities of the compounds were tested against Streptococcus fecalis and Escherichia coli with different concentrations.  相似文献   

8.
《Comptes Rendus Chimie》2019,22(5):419-427
The deregulation of copper homeostasis generates copper–amyloid aggregation and strongly participates in neuron damage in the brains of patients with Alzheimer's disease. Therefore, copper chelators able to regulate copper homeostasis should be considered as potential therapeutic agents. On the basis of a bidentate amine side chain attached at the 2-position of an 8-aminoquinoline motif, a series of low-molecular-weight copper chelators have been designed to act as specific tetradentate Cu(II) chelators. The affinity of these ligands for Cu(II) and their selectivity for Cu(II) with respect to Zn(II) are reported. These ligands provide a square planar tetradentate coordination sphere that should be suitable to extract copper (II) from copper–amyloid complexes, and are therefore expected to regulate copper homeostasis in vivo.  相似文献   

9.
Complexes of Co(II), Ni(II), Cu(II) and Zn(II) containing macrocyclic tetradentate nitrogen donor (N4) ligand have been synthesized from the template condensation reaction between o-phthalaldehyde and o-phenylenediamine. The newly synthesized ligand and its complexes have been characterized on the basis of results of elemental analysis, molar conductance, magnetic susceptibility measurements, FT-IR, electronic, 1H FT NMR spectral data and Job's method. Their thermal behaviour has been studied by the thermogravimetric analysis. An octahedral geometry has been proposed for all of these complexes except the copper complexes, which show distorted octahedral geometry. The low conductivity data suggest their non-ionic nature. The biological activities of the metal complexes have also been studied against different bacteria.  相似文献   

10.
The Cu(II)- and Co(II)-binding properties of two peptides, designed on the basis of the active site sequence and structure of the blue copper protein plastocyanin, are explored. Peptide BCP-A, Ac-Trp-(Gly)(3)-Ser-Tyr-Cys-Ser-Pro-His-Gln-Gly-Ala-Gly-Met-(Gly )(3)-His-(Gly)(2)-Lys-CONH(2), conserves the Cu-binding loop of plastocyanin containing three of the four copper ligands and has a flexible (Gly)(3) linker to the second His ligand. Peptide BCP-B, Ac-Trp-(Gly)(3)-Cys-Gly-His-Gly-Val-Pro-Ser-His-Gly-Met-Gly-CONH(2), contains all four blue copper ligands, with two on either side of a beta-turn. Both peptides form 1:1 complexes with Cu(II) through His and Cys ligands. BCP-A, the ligand loop, binds to Cu(II) in a tetrahedrally distorted square plane with axial solvent ligation, while BCP-B-Cu(II) has no tetrahedral distortion in aqueous solution. In methanolic solution, distortion of the square plane is evident for both BCP-Cu(II) complexes. Tetrahedral Co(II) complexes are observed for both peptides in aqueous solution but with 4:2 peptide:Co(II) stoichiometries as estimated by ultracentrifugation. Cu(II) reduction potentials for the aqueous peptide-Cu(II) complexes were measured to be +75 +/- 30 mV vs NHE for BCP-A-Cu(II) and -10 +/- 20 mV vs NHE for BCP-B-Cu(II). The results indicate that the plastocyanin ligand loop can act as a metal-binding site with His and Cys ligands in the absence of the remainder of the folded protein but, by itself, cannot stabilize a type 1 copper site, emphasizing the role of the protein matrix in protecting the Cu binding site from solvent exposure and the Cys from oxidation.  相似文献   

11.
A series of metal(II) complexes ML and ML2 [where M?=?Cu(II), Co(II), Ni(II), Zn(II), Mn(II), Cd(II), and VO(II); L?=?2-hydroxyphenyl-3-(1H-indol-3-yl)-prop-2-en-1-one (HPIP)] have been prepared and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, NMR, Mass, and ESR spectral studies. Conductivity measurements reveal that the complexes are non-electrolytes, except VO(II) complex. Spectroscopy and other data show square pyramidal geometry for oxovanadium and octahedral geometry for the other complexes. Redox behavior of the copper(II) and vanadyl complexes has been studied with cyclic voltammetry. Antimicrobial activities against several microorganisms indicate that a few complexes exhibit considerable activity. The nuclease activity shows that the complexes cleave DNA. All synthesized compounds can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation efficiency of the ligand is higher than that of urea and KDP.  相似文献   

12.
Summary In an attempt to study the role of metals in biologyab initio SCF calculations have been performed on a model complex simulating the binding between metals and biological materials. There is a certain distinction between the copper complexes compared to the other transition metals and in many cases the copper complexes are more similar to the Li and Be complexes than to other transition metal complexes. One special feature of the copper complexes is their strong ability for an easy transfer between the Cu(I) and Cu(II) states, allowing for a very flexible charge transfer with small energies required for the redox processes. These processes have been described in terms of orbital energies and Mulliken populations.Dedicated to Professor Inga Fischer-Hjalmars on the occasion of her 75th birthday  相似文献   

13.
The copper(II) coordination chemistry of westiellamide (H(3)L(wa)), as well as of three synthetic analogues with an [18]azacrown-6 macrocyclic structure but with three imidazole (H(3)L(1)), oxazole (H(3)L(2)), and thiazole (H(3)L(3)) rings instead of oxazoline, is reported. As in the larger patellamide rings, the N(heterocycle)-N(peptide)-N(heterocycle) binding site is highly preorganized for copper(II) coordination. In contrast to earlier reports, the macrocyclic peptides have been found to form stable mono- and dinuclear copper(II) complexes. The coordination of copper(II) has been monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric and polarimetric titrations, and EPR and IR spectroscopies, and the structural assignments have been supported by time-dependent studies (UV/Vis/NIR, ESI-MS, and EPR) of the complexation reaction of copper(II) with H(3)L(1). Density functional theory (DFT) calculations have been used to model the structures of the copper(II) complexes on the basis of their spectroscopic data. The copper(II) ion has a distorted square-pyramidal geometry with one or two coordinated solvent molecules (CH(3)OH) in the mononuclear copper(II) cyclic peptide complexes, but the coordination sphere in [Cu(H(2)L(wa))(OHCH(3))](+) differs from those in the synthetic analogues, [Cu(H(2)L)(OHCH(3))(2)](+) (L = L(1), L(2), L(3)). Dinuclear copper(II) complexes ([Cu(II) (2)(HL)(mu-X)](+); X = OCH(3), OH; L = L(1), L(2), L(3), L(wa)) are observed in the mass spectra. While a dipole-dipole coupled EPR spectrum is observed for the dinuclear copper(II) complex of H(3)L(3), the corresponding complexes with H(3)L (L = L(1), L(2), L(wa)) are EPR-silent. This may be explained in terms of strong antiferromagnetic coupling (H(3)L(1)) and/or a low concentration of the dicopper(II) complexes (H(3)L(wa), H(3)L(2)), in agreement with the mass spectrometric observations.  相似文献   

14.
A series of copper(II) and copper(I) complexes have been synthesized with ligands combining 6-methyl-2,2'-bipyridines with cyclotriveratrylene (CTV) (1) and with catechol (2). The electrochemical, (1)H NMR, and mass spectrometry characterizations of these complexes are described and discussed. The six pendant bipyridines of ligand 1 allow for the formation of two trinuclear copper(I) complexes [(1)Cu(3)](BF(4))(3) differing only in the conformation "vic" or "int" adopted by the ligand to fit the tetrahedral cuprous ions. Similarly, 1 generates two trinuclear copper(II) complexes in which the conformation of the ligand fits the square planar geometry of cupric ions. In both the cuprous and cupric complexes, a conformational equilibrium exists. Ligand 2 bearing two methylbipyridines has proven to be a useful model of the coordinating sites of ligand 1. In this case, two homologous copper(I) complexes are obtained, [(2)Cu]BF(4) and [(2)(2)Cu(2)](BF(4))(2), modeling respectively two possible coordination conformations of ligand 1. With copper(II), ligand 2 yields only one complex [(2)Cu](CF(3)SO(3))(2), which allows for the unambiguous identification of the conformations observed for ligand 1 complexes. The different coordinating modes of ligand 1 in the complexes mentioned are in exchange but exhibit different physical properties, thus representing a new bistable system based on conformational isomerism which exhibits an electrochemical potential hysteresis. An equilibrium constant and thermodynamic data were obtained for this system by variable-temperature cyclic voltammetry. The influence of coordinating vs noncoordinating solvents was also studied.  相似文献   

15.
A modified synthetic route for the complexes [Cu(II)5,7,12,14-tetramethyldinaphtho [b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)tmdnTAA], and [Cu(II) 5,7,12,14-tetramethyl-6,13-dichloro-dinaphtho[b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)dCltmdnTAA], is presented in this work. The electrochemical characterization of both complexes and their precursors, [bis(2,4-pentanedionato)copper(II)], [Cu(II)(acac)2] and [bis(3-chloro-2,4-pentanedionato)copper(II)], [Cu(II)(3-Cl-acac)2], respectively, under nitrogen and carbon dioxide is also presented. The voltammetric response of [Cu(II)(acac)2] and [Cu(II)(3-Cl-acac)2] are different compared to [Cu(II)tmdnTAA] and [Cu(II)dCltmdnTAA] under nitrogen. Precursors show the reduction of Cu(I) to Cu(0) and the tetraazadinaphtho[14]annulene complexes do not. The chlorine substituted complex has a lower reduction potential than the unsubstituted homologue under nitrogen atmosphere. However, the contrary response is obtained in the presence of carbon dioxide: the unsubstituted complex is more catalytic in terms of potential because the current discharge appears 270?mV shifted to the anodic region. These facts can be explained in terms of electronic and steric effects. The modified electrode obtained by oxidative electropolymerization of [Cu(II)tmdnTAA] over glassy carbon electrode presented a suitable amperometric response for the sulfite reduction in acidic medium (pH?=?2.7). A linear correlation was observed for the catalytic current and sulfite concentration between 0.6–6.0?mM range.  相似文献   

16.
New bidentate N-(2,6-di-phenyl-1-hydroxyphenyl) salicylaldimines bearing X=H and 3,5-di-t-butyl substituents on the salicylaldehyde ring, L(x)H, and their copper(II) complexes, M(Lx)2, (M=Cu(II), Co(II), Pd(II), Ni(II) and Zn(II)) have been synthesized and characterized by IR, UV/vis, 1H NMR, 13C NMR, ESR spectroscopy, magnetic susceptibility measurements, as well as their oxidation with PbO(2) and reduction (for Cu(Lx)2) with PPh(3) were investigated. ESR studies indicate that oxidation of M(Lx)2 produces ligand-centered M(II)-phenoxyl radical species. The Cu(Lx)2 complexes, unlike others M(Lx)2, are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give unstable radical intermediates which are converted to another stable secondary radical species. The analysis of ESR spectra of Cu(Lx)(2), Co(L1)(2) and generated phenoxyl radicals are presented.  相似文献   

17.
A novel series of triazine-appended macrocyclic complexes has been investigated as potential hydrogen bonding receptors for complementarily disposed heterocycles. Cocrystallization of a melamine-appended azacyclam complex of Cu(II) has been achieved with barbitone, the barbiturate anion and thymine. In each case, a complementary DAD/ADA hydrogen bonding motif between the melamine group and the heterocycle has been identified by X-ray crystallography. Electrochemical studies of the copper macrocycles in both nonaqueous and aqueous solution show anodic shifts of the Cu(II/)(I) redox couple of more than 60 mV upon addition of guest molecules with matching H-bonding motifs. The Zn(II) analogues have been synthesized via transmetalation of the Cu(II) complex, and their guest binding properties investigated by NMR spectroscopy. (1)H NMR shifts of up to 0.8 ppm were observed upon addition of guest, and stability constants are similar to those obtained electrochemically.  相似文献   

18.
Experiments conducted in the gas phase have led to the formation of a series of stable gold(II) complexes with nitrogen- and oxygen-containing ligands. Such complexes are very rare in condensed-phase chemistry. However, there is also a significant group of potential ligands, for example, H2O and NH3, for which stable complexes could not be formed. There are strong similarities between these observations and earlier results presented for silver(II), but both metal ions behave markedly different from copper(II). As a group the majority of successful gold(II) ligands are characterized by being good sigma donor-pi acceptor molecules; however, it is also possible to understand the ability of individual ligands to stabilize the metal ion in terms of a simple electrostatic model. Application of the latter reveals a semiquantitative trend between the physical properties of a ligand, e.g. ionization energy, dipole moment, and polarizability, and the ligand's ability to stabilize either Cu(II), Ag(II), or Au(II). The model successfully accounts for the preference of Cu(II) for aqueous chemistry, in comparison to the complete absence of such behavior on the part of Ag(II) and Au(II). Ligands from recent examples of stable condensed-phase gold(II) complexes appear to meet at least one of the criteria identified from the model.  相似文献   

19.
A cross-bridged cyclam ligand bearing two N-carboxymethyl pendant arms (1) has been found to form a copper(II) complex that exhibits significantly improved biological behavior in recent research towards (64)Cu-based radiopharmaceuticals. Both the kinetic inertness and resistance to reduction of Cu-1 are believed to be relevant to its enhanced performance. To explore the influence of pendant arm length on these properties, new cross-bridged cyclam and cyclen ligands with longer N-carboxyethyl pendant arms, 2 and 4, and their respective copper(II) complexes have been synthesized. Both mono- as well as di-O-protonated forms of Cu-2 have also been isolated and structurally characterized. The spectral and structural properties of Cu-2 and Cu-4, their kinetic inertness in 5 M HCl, and electrochemical behavior have been obtained and compared to those of their N-carboxymethyl-armed homologs, Cu-1 and Cu-3. Only the cyclam-based Cu-1 and Cu-2 showed unusually high kinetic inertness towards acid decomplexation. While both of these complexes also exhibited quasi-reversible Cu(II)/Cu(I) reductions, Cu-2 is easier to reduce by a substantial margin of +400 mV, bringing it within the realm of physiological reductants. Similarly, of the cyclen-based complexes, Cu-4 is also easier to reduce than Cu-3 though both reductions are irreversible. Biodistribution studies of (64)Cu-labeled 2 and 4 were performed in Sprague Dawley rats. Despite comparable acid inertness to their shorter-armed congeners, both longer-armed ligand complexes have poorer bio-clearance properties. This inferior in vivo behavior may be a consequence of their higher reduction potentials.  相似文献   

20.
The coupling of radionuclides such as copper (67Cu and 64Cu) to antibodies by bifunctional chelating agents (or BCA) requires extremely high stability to avoid in vivo release of metal. Six copper(II) and five nickel(II) complexes with N2S2 tetradentate ligands were synthesised for potential medical applications, and stability studies were conducted. I.r and u.v.-vis. spectra provided structural data on the geometry of the complexes. The redox potentials obtained from cyclic voltammetry allowed us to estimate the stability constants of each complex and then select the more suitable ligand for future applications in radioimmunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号