首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用低温燃烧法制备出不同稀土元素掺杂的高电压镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4)正极材料,探究了不同掺杂比例(物质的量分数0.5%、1%、2%)和不同掺杂稀土元素(La、Ce、Yb)对样品性能的影响,并通过X射线衍射、拉曼光谱、电子顺磁共振和恒电流间歇滴定等技术探究了其影响机理。从X射线衍射图可以看出,稀土掺杂可以抑制Li_xNi_(1-x)O杂质相的产生;电感耦合等离子谱结果表明,掺杂进入的稀土元素与设计比例基本相符;从拉曼光谱图可以看出,稀土元素可以使样品的有序相增多,其中Ce掺杂样品的有序相最多;结合电子顺磁共振波谱氧空位测试,发现Ce掺杂诱导了样品中有序相比例增加,从而使样品的稳定性提高;经恒电流间歇滴定技术测试发现,Ce掺杂镍锰酸锂样品的扩散系数比未掺杂样品高了约15倍;在不同掺杂比例上,1%掺杂量时样品性能最佳。在3种最佳掺杂量的稀土元素样品中,Ce掺杂的样品性能最优,首次放电比容量可以达到133.3mAh·g~(-1),比未掺杂样品放电比容量高且首次效率提高了 18%,在1C下循环200次后,容量保持率为102%,比未掺杂样品提高了 8%。  相似文献   

2.
Gd-doped CdO thin films with various Gd concentrations have been prepared on glass and Si wafer substrates using sol gel technique. The films were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and dc-electrical measurements. XRF method was used to determine the %Gd content in the films while XRD was used to study the influence of Gd doping on the detailed crystalline structure. Experimental data indicate that Gd3+ doping with level of less than 2.4% slightly enlarge the CdO crystalline unit cell. The bandgap (E g) of Gd-doped CdO suffers narrowing by about 13% due to a small (0.2%) doping level but with %Gd doping level larger than 2.4%, E g becomes wider than that of undoped CdO. The electrical behaviours of the Gd-doped CdO films show that they are degenerate semiconductors. The 2% Gd-doped CdO film shows increase in its mobility by about 92%, conductivity by 320%, and carrier concentration by 127%, relative to undoped CdO film. From transparent-conducting-oxide point of view, the Gd doping of CdO by sol gel method is not effective. Finally, the absorption in the NIR spectral region was investigated to be due to the free electrons.  相似文献   

3.
The electron transport properties of a novel pn junction nanowire caused by boron‐doping and phosphorus‐doping are investigated using density functional theory combined with the nonequilibrium Green's functions formalism. A satisfying rectification is observed. This is a reasonable result after the analysis of the molecular‐projected self‐consistent Hamitonian (MPSH) states, transmission spectra, the frontier orbitals, and the dipole moments. In contrast, the undoped chain has no rectification character. In addition, a negative differential resistance behavior is also observed at V = 1.8 ~ 2.2 V in the doped nanowire and it could be illustrated from the MPSH states and the transmission spectra. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Electronic paramagnetic resonance (EPR) and conductivity of pristine and iodine-doped PPMQ were studied. The pristine polymer EPR signal exhibited a Lorentzian line shape. Unpaired spin density measurements indicated that the spin concentrations of the undoped polymer lie in the range of one spin per 150–190 repeat units at room temperature. The peak-to-peak width doubled, the line shape became asymmetric and the spin concentration in the polymer increased slightly after doping with iodine. EPR saturation experiments show that the spin lattice relaxation time T1 is sensitive to trace impurity. Considerable reduction of T1 after doping with iodine shows strong coupling between the spin system and N-iodonium nucleus. Conductivity increases up to 5 orders of magnitude by iodine doping; at room temperature, the best value found was 0.017 S/cm. The activation energy for conductance after doping is about half that of pristine polymer.  相似文献   

5.
《Electroanalysis》2003,15(10):878-884
Three glassy carbon (GC) samples: undoped and doped with boron or phosphorus, prepared at 1000 °C, were compared in respect to hydrodynamic current‐potential curves in acidic medium, cyclic voltammograms for Fe3+/2+ and Fe(CN)63?/4? and argentometric titrations of halides. Some experiments were also carried out using standard Tokai and Sigri GC and Ag electrode. It appeared that GC doped with boron and phosphorus exhibited significant increase in hydrogen evolution overpotential. As for the electrode kinetics (ΔEp criterion), no significant difference was observed between doped and undoped electrodes. In the potentiometric titrations the phosphorus‐doped electrode was advantageous over the other GC and Ag electrodes as it enabled more precise end‐point detection.  相似文献   

6.
用溶胶凝胶法合成了Na+离子掺杂的Li1-xNaxMn2O4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li1-xNax Mn2O4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li0.97Na0.03Mn2O4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn2O4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 mAh·g-1的放电容量,高于未掺杂样品的52.1 mAh·g-1。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn2O4的电化学性能,是一种可行的改性方法。  相似文献   

7.
用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g~(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。  相似文献   

8.
Heteroatom‐doping into graphitic networks has been utilized for opening the band gap of graphene. However, boron‐doping into the graphitic framework is extremely limited, whereas nitrogen‐doping is relatively feasible. Herein, boron/nitrogen co‐doped graphene (BCN‐graphene) is directly synthesized from the reaction of CCl4, BBr3, and N2 in the presence of potassium. The resultant BCN‐graphene has boron and nitrogen contents of 2.38 and 2.66 atom %, respectively, and displays good dispersion stability in N‐methyl‐2‐pyrrolidone, allowing for solution casting fabrication of a field‐effect transistor. The device displays an on/off ratio of 10.7 with an optical band gap of 3.3 eV. Considering the scalability of the production method and the benefits of solution processability, BCN‐graphene has high potential for many practical applications.  相似文献   

9.
We study the structural, electronic, and magnetic properties of monolayer α-PbO0.875A0.125 (A = N, F), which are calculated using first principles. As a result, N doping induces local ferromagnetism centered at the N2− site, originating from the spin-down N 2p valence states. On the other hand, F doping induces nonmagnetism and induces ab-plane deformation, where F receives one electron to its nearest-neighboring Pb1.75+ ions. N doping redshifts the bandgap of the undoped system and transforms it to be indirect, while F doping blueshifts the bandgap through the Burstein-Moss effect. The hybridization of Pb 6p and O 2p orbitals is stronger near the A site than that of the crystal structure edge. Our result shows new insights, predicting possible experimental results for future functional device applications.  相似文献   

10.
采用两步水热晶化法,通过在合成体系中加入硼酸、氟化铵、氟硼酸铵,合成出了硼和氟改性的ZSM-5分子筛。利用X射线衍射、氮气吸附-脱附、29Si固体核磁共振波谱、傅里叶变换红外光谱、扫描电子显微镜以及NH3程序升温脱附等测试手段对样品进行了表征。结果表明:硼和氟掺杂条件下可以合成具有较高结晶度的ZSM-5分子筛,杂原子掺杂提高了分子筛的硅铝比;硼和氟掺杂可以显著降低ZSM-5分子筛的Lewis酸量,但提高了Brønsted酸量;硼和氟共同作用可以降低ZSM-5分子筛的颗粒尺寸。甲醇制丙烯评价结果显示:较低的Lewis酸量和适宜的Brønsted酸性有利于提高丙烯选择性和催化剂寿命;NH4BF4改性的ZSM-5分子筛(Z5-BF2)表现出较高的丙烯选择性和较长的催化剂寿命。  相似文献   

11.
Yang  S. Y.  Zhang  S.  Fu  B. L.  Wu  Q.  Liu  F. L.  Deng  C. 《Journal of Solid State Electrochemistry》2010,15(11):2633-2638

A series of Cr-doped Li3V2 − x Cr x (PO4)3 (x = 0, 0.1, 0.25, and 0.5) samples are prepared by a sol–gel method. The effects of Cr doping on the physical and chemical characteristics of Li3V2(PO4)3 are investigated. Compared with the XRD pattern of the undoped sample, the XRD patterns of the Cr-doped samples have no extra reflections, which indicates that Cr enters the structure of Li3V2(PO4)3. As indicated by the charge–discharge measurements, the Cr-doped Li3V2 − x Cr x (PO4)3 (x = 0.1, 0.25, and 0.5) samples exhibit lower initial capacities than the undoped sample at the 0.2 C rate. However, both the discharge capacity and cycling performance at high rates (e.g., 1 and 2 C) are enhanced with proper amount of Cr doping (x = 0.1). The highest discharge capacity and capacity retention at the rates of 1 and 2 C are obtained for Li3V1.9Cr0.1(PO4)3. The improvement of the electrochemical performance can be attributed to the higher crystal stability and smaller particle size induced by Cr doping.

  相似文献   

12.
Density functional calculations were performed on electronic and optical properties of C (or N)-doped cubic cerium dioxide (CeO2). When O is replaced by C (or N) in CeO2, obvious band-gap (Eg) reduction is observed. Meanwhile, it is interesting to find that the substitutional doping of C (or N) in CeO2 obviously increases the O 2p–Ce 4f transition intensity and also the refractive index. The increase in the O 2p–Ce 4f transition intensity on going from undoped, N-doped and C-doped CeO2 was related to the covalent character of the Ce–O bond. Compared with the undoped CeO2, the C (or N)-doped CeO2, with steep absorption peaks at lower energy, can be used for visible-light absorption applications.  相似文献   

13.
Designing high-performance materials for CO2 capture and conversion is of great significance to reduce the greenhouse effect and alleviate the energy crisis. The strategy of doping is widely used to improve activity and selectivity of the materials. However, it is unclear how the doping densities influence the materials’ properties. Herein, we investigated the mechanism of CO2 capture, separation and conversion on MoS2, MoSe2 and Janus MoSSe monolayers with different boron doping levels using density functional theory (DFT) simulations. The results indicate that CO2, H2 and CH4 bind weakly to the monolayers without and with single-atom boron doping, rendering these materials unsuitable for CO2 capture from gas mixtures. In contrast, CO2 binds strongly to monolayers doped with diatomic boron, whereas H2 and CH4 can only form weak interactions with these surfaces. Thus, the monolayers doped with diatomic boron can efficiently capture and separate CO2 from such gas mixtures. The electronic structure analysis demonstrates that monolayers doped with diatomic doped are more prone to donating electrons to CO2 than those with single-atom boron doped, leading to activation of CO2. The results further indicate that CO2 can be converted to CH4 on diatomic boron doped catalysts, and MoSSe is the most efficient of the surfaces studied for CO2 capture, separation and conversion. In summary, the study provides evidence for the doping density is vital to design materials with particular functions.  相似文献   

14.
Positron lifetime and Doppler broadening of the annihilation line measurements were performed in highT c superconducting samples YBa2Cu3Cd x O y ,x=0, 0.05 and 6.9<y<7, as a function of temperature in the region of 14–300 K. It was found that the positron lifetime and theS parameter values are lower in the Cd doped sample than those in the undoped one. It was also observed that the positron annihilation parameters show similar temperature dependence for the undoped and Cd doped samples. We conclude that the Cd doping in highT c superconductor YBa2Cu3Cd x O y , 6.9<y<7 fills defects associated with oxygen vacancies probably in oxygen deficient regions which can trap positrons.  相似文献   

15.
A series of iron/titanium oxide nanocrystalline particles with Fe/Ti molar ratios up to 0.15 were synthesized by a modified sol-gel technique using Ti(IV)-isopropoxide and anhydrous Fe(II)-acetate. The precursors were mixed and subsequently hydrolyzed with water molecules generated in situ by an esterification reaction between acetic acid and ethanol. As-synthesized samples were amorphous for XRD, independently of the relative amount of doped iron. The undoped samples and samples with the molar ratio Fe/Ti = 0.01, treated at up to 500°C, contained anatase as the dominant phase and rutile as the minor phase. The samples with the Fe/Ti molar ratio of 0.15, treated at the same temperature, contained anatase (major phase), rutile (minor phase) and a very small amount of an unidentified phase. The crystallite size of the dominant phase in the samples was estimated from the XRD line broadening using the Scherrer formula. Thermogravimetric analysis showed that weight loss was accelerated and completed at lower temperatures as the relative concentration of iron in the Fe-TiO2 samples increased. The strong exothermic peak in the DTA curve between 300 and 450°C in the undoped TiO2 sample shifted to the lower temperatures and became much more asymmetrical with increased iron doping. This DTA peak corresponded to the amorphous-to-anatase-transition and it included several steps such as (i) the thermal degradation of strongly bound organic molecules, (ii) the condensation of unhydrolyzed –OR groups, (iii) the sintering and growth of particles and (iv) the rearrangement of newly formed chemical bonds. The center of the most intense Raman band of the E g mode at 143.8 cm–1 in the undoped TiO2 sample continually shifted to higher wave numbers and the full-width at half maximum increased with iron doping. Transmission electron microscopy revealed decrease of the mean particle size from 16.3 nm in undoped sample to 9.7 nm in the highest iron doped sample. The particle size distribution becomes narrower with iron doping. The narrowest particle size distribution was found in sample with the Fe/Ti molar ratio of 0.05, calcined at 500°C. Scanning electron microscopy of undoped samples calcined at 580°C showed irregular aggregates having a relatively flat surface. On the contrary, the samples doped with 15 mol% of iron and treated at the same temperature exhibited a non-uniform sponge-like surface with distributed micrometer holes.  相似文献   

16.
吴晓宏  ab  王松a  郭云b  谢朝阳b  韩璐a  姜兆华a 《中国化学》2008,26(10):1939-1943
在染料敏化太阳能电池中,TiO2膜和敏化剂决定着电池的总体效率和机械性能。本文以4-甲基吡啶为原料,经过偶联、氧化、配位和配体交换反应合成了cis-RuL2(SCN)2, (L=2,2’-联吡啶-4,4’-二羧酸),通过溶胶-凝胶法制备了TiO2膜。为了提高TiO2膜的光电性能,将不同浓度的La(NO3)3 (0.1%、0.3%、0.5%和0.7%) 加入到溶胶中,采用cis-RuL2(SCN)2将掺杂前后的TiO2膜进行敏化。利用X射线衍射仪、原子力显微镜和X射线光电子能谱对所得薄膜进行结构表征。结果表明,当La离子的浓度为0.5%时,太阳能电池的效率最高,短路电流和开路电压比未掺杂的分别提高了0.54 mA/cm2和30.41 mV。  相似文献   

17.
Single-source precursor syntheses have been devised for the preparation of structurally similar graphitic carbon dots (CDs), with (g-N-CD) and without (g-CD) core nitrogen doping for artificial photosynthesis. An order of magnitude improvement has been realized in the rate of solar (AM1.5G) H2 evolution using g-N-CD (7950 μmolH2 (gCD)−1 h−1) compared to undoped CDs. All graphitized CDs show significantly enhanced light absorption compared to amorphous CDs (a-CD) yet undoped g-CD display limited photosensitizer ability due to low extraction of photogenerated charges. Transient absorption spectroscopy showed that nitrogen doping in g-N-CD increases the efficiency of hole scavenging by the electron donor and thereby significantly extends the lifetime of the photogenerated electrons. Thus, nitrogen doping allows the high absorption coefficient of graphitic CDs to be translated into high charge extraction for efficient photocatalysis.  相似文献   

18.
Herein we report that boron doping in carbon dots results in increased photoluminescence (PL) quantum yield, which could be used for ratiometric intracellular pH sensing in cancer cell lines. Using a mixture of citric acid monohydrate, thiourea, and boric acid, microwave-assisted synthesis of boron doped blue emitting carbon dots (B-Cdots) with an average size of 3.5±1.0 nm was achieved. For B-Cdots, the maximum quantum yield (QY) was observed to be 25.8 % (11.1 % (w/w) H3BO3 input concentration), whereas, the same was calculated to be 16.9 % and 11.4 % for Cdots (synthesized from citric acid monohydrate and thiourea only) and P-Cdots (phosphorus doped carbon dots; synthesized using citric acid monohydrate, thiourea and phosphoric acid) (11.1 % (w/w) H3PO4 input concentration), respectively. The observed luminescence efficiencies as obtained from steady state and time-resolved photoluminescence measurements suggest an alternative emission mechanism due to boron/phosphorus doping in carbon dots. We furthermore demonstrated facile composite formation using B-Cdots and another carbon dots with orange emission in presence of polyvinyl alcohol (PVA), resulting in white light emission (0.31, 0.32; λex 380 nm). The white light emitting composite enabled ratiometric pH sensing in the aqueous medium and showed favorable uptake properties by cancerous cells for intracellular pH sensing as well.  相似文献   

19.
The present study shows the dependence of the temperature of glass transition — T g upon the presence and quantity of doping Pr atoms. Substantial effect of the form — chemical nature of compound from which the doping atoms are incorporated into the glass has been displayed as well. With the increase of the content of sulfidic form T g values approach the level of undoped glasses. Thus, if the studied glasses are doped by sulfidic form, bonded areas atoms of Pr so atoms of S. Glasses doped by halogenous source of Pr behave differently; the shift of the T g value does not change with the amount of the dopand, displaying the anion deficiency of glass stoichiometry in studied interval of halogenous dopands. Generally, a very slight non-stability of the glass against the oxidation in temperature region of glass transition is observed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
The catalytic activity of the [Rh(cod)Cl]2 complex (cod  cis, cis-cyclo-octa-1,5-diene) with respect to the polymerization of ethynylferrocene (EFc) was examined. A good yield (about 80%) of polyethynylferrocene (PEFc) was obtained in benzene by addition of sodium hydroxide as co-catalyst. PEFc was insoluble in most organic solvents. The conductivity (s̀) of the undoped polymer is about 10−11 ohm−1 cm−1; upon doping PEFc with iodine in tetrahydrofuran the conductivity can be increased to 10-100 ohm−1 cm−1. The influence of other doping agents was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号