首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we investigate the local and global bifurcation behaviors of an archetypal self-excited smooth and discontinuous oscillator driven by moving belt friction. The belt friction is described in the sense of Stribeck characteristic to formulate the mathematical model of the proposed system. For such a friction characteristic, the complicated bifurcation behaviors of the system are discussed. The bifurcation of the multiple sliding segments for this self-excited system is exhibited by analytically exploring the collision of tangent points. The Hopf bifurcation of this self-excited system with viscous damping is analyzed by making the examination of the eigenvalues at the steady state and discussing the stability of the limit cycles. The bifurcation diagrams and the corresponding phase portraits are depicted to demonstrate the complicated dynamical behaviors of double tangency bifurcation, the bifurcation of sliding homoclinic orbit to a saddle, subcritical Hopf bifurcation and grazing bifurcation for this system.  相似文献   

2.
Homoclinic (and heteroclinic) trajectories are closed paths in phase space that connect one or more saddle points. They play an important role in the study of dynamical systems and are associated with the creation/destruction of limit cycles as a parameter is varied. Often, this creation/destruction process involves complicated sequences of bifurcations in small regions of parameter space and there is now an established theoretical framework for the study of such systems.

The eigenvalues of saddle points in the phase space determine the behaviour of the system. In this article we present a new eigenvalue estimation technique based on a wavelet transformation of a time series under study and compare it with an existing method based on phase space reconstruction. We find that the two methods give good agreement with theory using clean model data, but where noisy data are analysed the wavelet technique is both more robust and easier to implement.  相似文献   


3.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed.  相似文献   

4.
In this paper, we study a class of cubic Z 2-equivariant polynomial Hamiltonian systems under the perturbation of Z 2-equivariant polynomial of degree 5. First, we consider the unperturbed system and obtain necessary and sufficient conditions for the critical point (0,1) to be a nilpotent saddle, center, or cusp. We show that it can have 14 different phase portraits. Using the methods of Hopf and homoclinic bifurcation theory, we study the bifurcation problem of the perturbed system and prove that there exist 12 limit cycles.  相似文献   

5.
The behaviour of the parametrically driven pendulum is very complex. Therefore, a global study is carried out to cover all possible situations. The study is mainly numeric, though primary bifurcations of subharmonic motions, as well as the homoclinic intersection of the hilltop saddle, are evaluated according to the Melnikov theory. Extended use is made of the cell-to-cell mapping algorithm to evaluate attracting basins of the various periodic motions. Heteroclinic intersections are always present, independently of the excitation intensity, so that the boundaries of attracting basins are always very complicated, even below the homoclinic tangency of the hilltop saddle. The oscillator exhibits various kinds of rotating and oscillating motions. All these motions lead to chaos after a period doubling cascade. It is shown that chaos usually occurs at a much greater excitation level than at that which produces homoclinic tangency of the hilltop saddle; the greater the damping, the greater the difference. The oscillatory chaotic motion is associated with the first change in the period two Birkhoff signature.  相似文献   

6.
A quantitative analysis of limit cycles and homoclinic orbits, and the bifurcation curve for the Bogdanov-Takens system are discussed. The parameter incremental method for approximate analytical-expressions of these problems is given. These analytical-expressions of the limit cycle and homoclinic orbit are shown as the generalized harmonic functions by employing a time transformation. Curves of the parameters and the stability characteristic exponent of the limit cycle versus amplitude are drawn. Some of the limit cycles and homoclinic orbits phase portraits are plotted. The relationship curves of parameters μ and A with amplitude a and the bifurcation diagrams about the parameter are also given. The numerical accuracy of the calculation results is good.  相似文献   

7.
8.
This article presents a new asymptotic method to predict dynamic pull-in instability of nonlocal clamped–clamped carbon nanotubes (CNTs) near graphite sheets. Nonlinear governing equations of carbon nanotubes actuated by an electric field are derived. With due allowance for the van der Waals effects, the pull-in instability and the natural frequency–amplitude relationship are investigated by a powerful analytical method, namely, the parameter expansion method. It is demonstrated that retaining two terms in series expansions is sufficient to produce an acceptable solution. The obtained results from numerical methods verify the strength of the analytical procedure. The qualitative analysis of system dynamics shows that the equilibrium points of the autonomous system include center points and unstable saddle points. The phase portraits of the carbon nanotube actuator exhibit periodic and homoclinic orbits.  相似文献   

9.
This paper presents an investigation of limit cycles in oscillator systems described by a perturbed double-well Duffing equation. The analysis of limit cycles is made by the Melnikov theory. Expressing the solutions of the unperturbed Duffing equation by Jacobi elliptic functions allows us to calculate explicitly the Melnikov function, whereupon the final result is a function involving the complete elliptic integrals. The Melnikov function is analyzed with the aid of the Picard–Fuchs and Riccati equations. It has been proved that the considered oscillator system can have two small hyperbolic limit cycles located symmetrically with respect to the y-axis, or one large hyperbolic limit cycle, or two large hyperbolic limit cycles, or one large limit cycle of multiplicity 2. Moreover, we have obtained the conditions under which each of these limit cycles arises. The present work gives the conditions for the arising of limit cycles around the homoclinic trajectory. In this connection, an alternative approach is proposed for obtaining a series expansion of the Melnikov function near the homoclinic trajectory. This approach uses the series expansion of the complete elliptic integrals as the elliptic modulus tends to 1. It is shown that a jumping phenomenon may occur between limit cycles in the analyzed oscillator system. The conditions for the occurrence of this jumping phenomenon are given. A method for the synthesis of an oscillator system with a preliminary assigned limit cycle is also presented in the article. The obtained analytical results are illustrated and confirmed by numerical simulations.  相似文献   

10.
The boundaries of the basin of attraction are usually assumed to be rather elementary for Hamiltonian systems with autonomous perturbations. In the case of one saddle point, the sequences of orbits before capture are unique for each basin. However, we show that for two saddle points each with double heteroclinic orbits, there is an infinite number of different sequences of nearly homoclinic orbits before capture depending on the four heteroclinic parameters. The probabilities of capture are independent of the capture sequence.  相似文献   

11.
The influence of van der Waals (vdW) force on the stability of electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.  相似文献   

12.
Introduction LetVλ(x),x∈R2,λ∈RkbeafamilyofplanarC∞(oranalytic)vectorfields.Suppose thatforλ=λ0,Vλ0hasahyperbolicsaddlepointattheorigin(0,0)inthephaseplaneandthere isahomoclinicorbit(oraseparatrixloop)Γ0totheorigin.Thehyperbolicityratioattheorigin isr(λ)=-λ1/λ2,whereλ1<0<λ2arethetwoeigenvaluesofthelinearizedsystematthe origin.Generally,whenλ≠λ0and|λ-λ0|issmallenough,nearΓ0limitcycleswillbe created.Thisso_calledhomoclinicbifurcationhasbeenstudiedbyalotofauthors[1-3].Deno…  相似文献   

13.
In this paper we are mainly interested in the bifurcation phenomena for a class of planar piecewise smooth differential systems, where a new phenomenon, i.e. sliding heteroclinic bifurcation, is found. Furthermore we will show that the involved systems can present many interesting bifurcation phenomena, such as the (sliding) heteroclinic bifurcation, sliding (homoclinic) cycle bifurcation and semistable limit cycle bifurcation and so on. The system can have two hyperbolic limit cycles, which are bifurcated in one way from a semistable limit cycle, and in another way from a heteroclinic cycle and a sliding cycle. In the proof of our main results, we will use the geometric singular perturbation theory to analyze the dynamics near the sliding region.  相似文献   

14.
In this paper, we analyze the codimension-2 bifurcations of equilibria of a two-dimensional Hindmarsh–Rose model. By using the bifurcation methods and techniques, we give a rigorous mathematical analysis of Bautin bifurcation. The main result is that no more than two limit cycles can be bifurcated from the equilibrium via Hopf bifurcation; sufficient conditions for the existence of one or two limit cycles are obtained. This paper also shows that the model undergoes a Bogdanov–Takens bifurcation which includes a saddle-node bifurcation, an Andronov–Hopf bifurcation, and a homoclinic bifurcation. In some case, the globally asymptotical stability is discussed.  相似文献   

15.
In this paper we study the existence of heteroclinic cycles in generic unfoldings of nilpotent singularities. Namely we prove that any nilpotent singularity of codimension four in \mathbbR4{\mathbb{R}^4} unfolds generically a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits to equilibrium points with two pairs of complex eigenvalues. We also prove that any nilpotent singularity of codimension three in \mathbbR3{\mathbb{R}^3} unfolds generically a bifurcation curve of heteroclinic cycles between two saddle-focus equilibrium points with different stability indexes. Under generic assumptions these cycles imply the existence of homoclinic bifurcations. Homoclinic orbits to equilibrium points with complex eigenvalues are the simplest configurations which can explain the existence of complex dynamics as, for instance, strange attractors. The proof of the arising of these dynamics from a singularity is a very useful tool, particularly for applications.  相似文献   

16.
The perturbation-incremental method is applied to determine the separatrices and limit cycles of strongly nonlinear oscillators. Conditions are derived under which a limit cycle is created or destroyed. The latter case may give rise to a homoclinic orbit or a pair of heteroclinic orbits. The limit cycles and the separatrices can be calculated to any desired degree of accuracy. Stability and bifurcations of limit cycles will also be discussed.  相似文献   

17.
This paper studies a small Hopfield neural network with a memristive synaptic weight. We show that the previous stable network after one weight replaced by a memristor can exhibit rich complex dynamics, such as quasi-periodic orbits, chaos, and hyperchaos, which suggests that the memristor is crucial to the behaviors of neural networks and may play a significant role. We also prove the existence of a saddle periodic orbit, and then present computer-assisted verification of hyperchaos through a homoclinic intersection of the stable and unstable manifolds, which gives a positive answer to an interesting question that whether a 4D memristive system with a line of equilibria can demonstrate hyperchaos.  相似文献   

18.
Cascades of period-doubling bifurcations have attracted much interest from researchers of dynamical systems in the past two decades as they are one of the routes to onset of chaos. In this paper we consider routes to onset of chaos involving homoclinic-doubling bifurcations. We show the existence of cascades of homoclinic-doubling bifurcations which occur persistently in two-parameter families of vector fields on ?3. The cascades are found in an unfolding of a codimension-three homoclinic bifurcation which occur an orbit-flip at resonant eigenvalues. We develop a continuation theory for homoclinic orbits in order to follow homoclinic orbits through infinitely many homoclinic-doubling bifurcations.  相似文献   

19.
This paper introduces a numerical scheme for simulating instabilities of a nonlinear rotordynamic system including thermal effects in the fluid film bearings. The method utilizes shooting/arc-length continuation, and simultaneous, finite element based solutions of the variable viscosity Reynolds equation and the energy equation. This provides a means to investigate the effects of the thermo-hydrodynamic THD model on bifurcations and nonlinear rotordynamic stability. A “Jeffcott” type rigid rotor is modeled as supported on double-layered fluid film, floating ring bearings (FRB). The FRB are known to produce highly nonlinear forces as functions of relative and absolute internal displacements and velocities. Both autonomous (free vibration) and non-autonomous (mass unbalanced excitation) cases and algorithms are presented. The computational workload and execution time required for determining coexisting periodic solutions is significantly reduced by employing deflation and parallel computing methods. The THD model nonlinear responses and bifurcation diagrams are compared with isoviscous model results for various lubricant supply temperatures. The autonomous case, THD model orbit sizes and onset of Hopf and saddle–node bifurcations for coexisting steady state responses, may have significant differences relative to the isothermal model results. The onset of Hopf bifurcation is strongly dependent on thermal conditions, and the saddle–node bifurcation points are significantly shifted compared to the isothermal model. This tends to increase the likelihood of bifurcation from a machine operators standpoint. In the non-autonomous case, large unbalance forces create sub-synchronous and quasi-periodic responses at low spin speeds. The responses stability and onset of bifurcations of these responses are highly reliant on the lubricant supply temperature.  相似文献   

20.
We develop a mathematical model for a resonant gas sensor made up of an microplate electrostatically actuated and attached to the end of a cantilever microbeam. The model considers the microbeam as a continuous medium, the plate as a rigid body, and the electrostatic force as a nonlinear function of the displacement and the voltage applied underneath the microplate. We derive closed-form solutions to the static and eigenvalue problems associated with the microsystem. The Galerkin method is used to discretize the distributed-parameter model and, thus, approximate it by a set of nonlinear ordinary-differential equations that describe the microsystem dynamics. By comparing the exact solution to that associated with the reduced-order model, we show that using the first mode shape alone is sufficient to approximate the static behavior. We employ the Finite Difference Method (FDM) to discretize the orbits of motion and solve the resulting nonlinear algebraic equations for the limit cycles. The stability of these cycles is determined by combining the FDM discretization with Floquet theory. We investigate the basin of attraction of bounded motion for two cases: unforced and damped, and forced and damped systems. In order to detect the lower limit of the forcing at which homoclinic points appear, we conduct a Melnikov analysis. We show the presence of a homoclinic point for a loading case and hence entanglement of the stable and unstable manifolds and non-smoothness of the boundary of the basin of attraction of bounded motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号