首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previously elaborated capillary electrophoresis (CE) method used for the determination of glyphosate and aminomethylphosphonic acid (AMPA) was slightly modified in order to improve the sensitivity. However, detection limits attained (5 μg mL−1 for glyphosate and 4 μg mL−1 for AMPA) were still not satisfactory for analytical purposes, thus the addition of a preconcentration step before the CE analysis was proposed. AMBERLITE®IRA-900, a strong anion-exchange resin, was used to preconcentrate both analytes in environmental aqueous samples. The experimental conditions optimised in a previous work were readapted, by decreasing the eluent concentration due to CE limitations. Satisfactory results were attained when spiked ultrapure water was applied, with recoveries from 84 to 87% for glyphosate (R.S.D. < 6%) and from 85 to 98% for AMPA (R.S.D. < 5%). Enrichment factors up to 65 were achieved with this system, allowing the determination of 85 ng mL−1 of glyphosate and 60 ng mL−1 of AMPA. The extraction efficiency varied when four different natural water samples of varying conductivity were applied. Especially the strong dependence on ion concentration in samples on AMPA recovery was found. For glyphosate, good recoveries (86-99%) were obtained for samples of low and medium conductivity (0-800 μS). The effect of sample salt content on extraction efficiency was studied and a linear relationship could be established for AMPA (r2 = 0.996). An important improvement on recoveries was observed when lower volumes of sample were treated.A HPLC method with UV-vis detection and pre-column derivatisation with p-toluensulphonyl chloride was compared to the CE method. No significant differences in results were found when t- and F-statistical tests were applied.  相似文献   

2.
The reactions of 4-chloro-7-nitrobenzofurazan (NBD-Cl) with glyphosate (GLY) and with its main metabolite, aminomethylphosphonic acid (AMPA), have been studied. The resolution of binary mixtures of glyphosate and aminomethylphosphonic acid has been accomplished by partial least squares (PLS) multivariate calibration. The method of determination is based on the fluorescence emission of the derivatives formed in presence of NBD-Cl at 90 °C, in methanol and in basic medium. The dynamic ranges of the methods were comprised between 10 and 150 μg l−1 for GLY and between 10 and 200 μg l−1 for AMPA, being the detection limits 2 and 5.4 μg l−1 for GLY and AMPA, respectively. The total luminiscence information of the derivatives has been used to optimize the spectral data set to perform the calibration, by analysis of the three-dimensional excitation-emission matrices. A comparison between the predictive ability of the multivariate calibration method, partial least squares type 1 (PLS-1), on two spectral data sets, emission and synchronous spectra, has been performed. The PLS-1 method, applied to the emission spectra, has been selected as optimum. The proposed method has been applied to the simultaneous determination of GLY and AMPA in river water. For concentrations ranging from 100 to 600 μg l−1 of each compound in the samples, analytical recoveries range from 83 to 94% for GLY and from 104 to 120% for AMPA.  相似文献   

3.
This paper presents the application of ion chromatography with electrolytic eluent generation and mobile phase suppression for the direct conductimetric detection of glyphosate and its degradation product aminomethylphosphonic acid (AMPA). The compounds were separated on a Dionex AS18 anion exchange column with a 12–40 mM KOH step gradient from 9 to 9.5 min. The effect of the suppressor current intensity on the electrostatic interaction of these amphoteric compounds with the suppressor cation exchange membranes was evaluated. A suppressor current gradient technique was proposed for the limitation of peak broadening and baseline noise, in order to improve method sensitivity and detectability. It was observed that residual sample carbonates co-eluted with AMPA when a large injection loop was installed for the low level determination of both compounds in natural waters. For this reason, glyphosate was isocratically eluted using 33 mM KOH in order to decrease analysis time within 10 min and a column clean up step using 100 mM KOH was used to ensure retention time reproducibility. The developed method was applied to the analysis of drinking and natural water and it was further successfully applied to orange samples with slight modifications. Instrumental LOD for glyphosate was 0.24 μg/L, while method LOD was 0.54 μg/L for spring waters and 0.01 mg/kg for oranges using a 1000 μL direct loop injection of the sample. Intra-day and inter-day precision (as %RSD) for water samples was 4.6% and 12% at a spiking level of 2 μg/L, and the recovery ranged from 64% to 88% depending on sample conductivity. For orange samples, the inter-day precision was 1.4% at a spiking level of 4.4 mg/kg, while overall recovery was 103%. The developed method is direct, fast, sensitive and relatively inexpensive, and could be used as an ideal fast screening tool for the monitoring of glyphosate residues in water and fruit samples.  相似文献   

4.
The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption–desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9‐fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R2 > 0.999) under optimized conditions for high‐performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R2 > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg1‐1/n mL1/n g–1) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method.  相似文献   

5.
This paper describes a method for the sensitive and selective determination of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) residues in water and soil samples. The method involves a derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the case of water samples a volume of 10 mL was derivatized and then 4.3 mL of the derivatized mixture was directly injected in an on-line solid phase extraction (SPE)-LC-MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column. Soil samples were firstly extracted with potassium hydroxide. After that, the aqueous extract was 10-fold diluted with water and 2 mL were derivatized. Then, 50 microL of the derivatized 10-fold diluted extract were injected into the LC-MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at 50 and 500 ng/L, and also in soil samples, spiked at 0.05 and 0.5 mg/kg. In water samples, the mean recovery values ranged from 89 to 106% for glyphosate (RSD <9%), from 97 to 116% for AMPA (RSD < 10%), and from 72 to 88% in the case of glufosinate (RSD < 12%). Regarding soil samples, the mean recovery values ranged from 90 to 92% for glyphosate (RSD <7%), from 88 to 89% for AMPA (RSD <5%) and from 83 to 86% for glufosinate (RSD <6%). Limits of quantification for all the three compounds were 50 ng/L and 0.05 mg/kg in water and soil, respectively, with limits of detection as low as 5 ng/L, in water, and 5 microg/kg, in soil. The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA, while it was not efficient for glufosinate, that was quantified by external standards calibration. The method developed has been applied to the determination of these compounds in real water and soil samples from different areas. All the detections were confirmed by acquiring two transitions for each compound.  相似文献   

6.
A microscale solid-phase extraction (SPE) method using alumina-coated iron oxide nanoparticles (Fe3O4@Al2O3 NPs) as the affinity adsorbent for glyphosate (GLY) and its major metabolite aminomethylphosphonic acid (AMPA) in aqueous solution is reported. One milligram of Fe3O4@Al2O3 NPs was employed to extract both analytes in 5 ml of aqueous solution. After 5 min extraction, magnetic NPs were isolated from sample solution by employing an external magnet. Followed by rinsing the NPs with 5 μl of 20 mM Na4P2O7 solution for 5 min, the extract was directly analyzed using the derivatization-free CE-electrochemiluminescence (CE-ECL) method. With a sample-to-extract volume ratio of 1000, the enrichment factors for GLY and AMPA were 460 and 64, respectively. The limits of detection (LODs) were 0.3 and 30 ng ml−1 for GLY and AMPA in water, respectively. The developed method was applied to the analysis of GLY in guava fruit. The LOD of GLY in guava was 0.01 μg g−1. Total analysis time including sample pretreatment, SPE and CE-ECL was less than 1 h.  相似文献   

7.
A simple CE method for simultaneous determination of glyphosate and its metabolites (i.e. aminomethylphosphonic acid, glyoxylate, sarcosine and formaldehyde) in plants is reported here. A BGE of pH 7.5, 10% ACN, 7.5 mM phthalate, containing 0.75 mM hexadecyltrimethylammonium bromide as an electro‐osmotic flow modifier, an applied voltage of –20 kV and absorptiometric monitoring at 220 nm were the optimal chemical and instrumental parameters. The method, with development time 20 min, shows linear calibrations within the range 5–500 μg/mL (for all target analytes) with correlation coefficients between 0.999 and 0.998. It has been validated by application to samples of Lolium spp. The electroinjection mode hinders most interferents to enter the capillary, thus providing a clean electropherogram and making unnecessary long sample‐preparation steps.  相似文献   

8.
Current methods for quantitative determination of chlormequat residues in food crops are characterized by rather low recoveries and the need for derivatization (in case of gas chromatography, GC), or by high capital investment (in case of liquid chromatography–mass spectrometry, LC–MS). We propose a cation-exchange chromatography method for the analysis of chlormequat in pears. The method is based on extraction of the target compound with 40 mM HCl, followed by centrifugation and filtration. The filtrate is directly injected into an ion chromatograph equipped with a commercially available cation-exchange column and a suppressed conductivity detection system. While the limit of detection (LOD) (0.5 mg/kg) may not be small enough to allow dietary analysis, the method meets all validation requirements and is an alternative for the existing GC and LC–MS methods in quality control.  相似文献   

9.
Glyphosate and its metabolite aminomethylphosphonic acid in environmental water can be preconcentrated with an anion-exchange column, eluted with potassium citrate solution and determined directly by liquid chromatography with a post-column reactor and a fluorescence detector. The limit of detection and average recovery are 1 μg 1?1 and 89.3% for glyphosate and 0.4 μg l?1 and 86.3% for the metabolite.  相似文献   

10.
The selective oxidation of methyl p-tolyl sulfide (MTS) to the corresponding sulfoxide (MTSO) by peroxyacetic acid and the subsequent rapid separation of the sulfide and sulfoxide are the basis for a fast and reliable HPLC method for the determination of this oxidizing agent in the presence of hydrogen peroxide. The time required for chromatographic separation was reduced to less than 1 min. To improve the long-term stability of the sulfoxide solution, hydrogen peroxide was decomposed catalytically by manganese dioxide. Even in the presence of a tenfold molar excess of hydrogen peroxide, a storability of at least 20 h without a significant increase in MTSO concentration was achieved. External calibration can be performed using the stable and commercially available MTSO. Real samples from a brewery cleaning-in-place disinfection process were analysed and the results were compared with those of the classical two-step titration.  相似文献   

11.
A simple and rapid method was developed for the simultaneous analysis of nine different pesticides in water samples by gas chromatography with mass spectrometry. A number of parameters that may affect the recovery of pesticides, such as the type of solid‐phase extraction cartridge, eluting solvent in single or combination and their volumes, and water pH value were investigated. It showed that three solid‐phase extraction cartridges (Strata‐X, Oasis HLB, and ENVI‐18) produced the greatest recovery while ethyl acetate/dichloromethane/acetone (45:10:45, 12 mL) followed by dichloromethane (6 mL) was efficient in eluting target pesticides from solid‐phase extraction cartridges. Different water pH values (4–9) did not show a significant effect on the pesticides recovery. The optimized method was verified by performing spiking experiments with a series of concentrations (0.002–10 μg/L) in waters, with good linearity, recovery, and reproducibility for most compounds. The limit of detection and limit of quantification of this optimized method were 0.01–2.01 and 0.02–6.71 ng/L, respectively, much lower than the European Union environmental quality standard for the pesticides (0.1 μg/L) in waters. The proposed method was further validated by participation in an interlaboratory trial. It was then subsequently applied to river waters from north‐east Scotland, UK, for the determination of the target pesticides.  相似文献   

12.
A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 μM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01–200 μg/L (GLYP) and 0.1–400 μg/L (AMPA), acceptable reproducibility (RSD 5–7%, n = 5), low limits of detection of 0.005 μg/L for GLYP and 0.06 μg/L for AMPA, and satisfactory relative recoveries (90–94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success.  相似文献   

13.
曹赵云  牟仁祥  陈铭学 《色谱》2010,28(8):743-748
采用液相色谱-串联质谱建立了稻米中草甘膦及氨甲基膦酸残留量的测定方法。试样经水提取和C18固相萃取柱净化后,在硼酸缓冲液中与9-芴甲基氯甲酸酯(FMOC-Cl)进行衍生反应。以5 mmol/L乙酸铵溶液(pH 9)和乙腈为流动相,草甘膦和氨甲基膦酸的衍生产物在C18柱进行液相色谱分离;质谱检测采用电喷雾负离子化模式和多反应监测模式。结果表明,草甘膦和氨甲基膦酸在0.00050~1.0 mg/L范围内线性良好,线性相关系数(r)分别为0.9997和0.9999。通过对空白大米样品进行3个加标水平的添加回收实验(n=5),草甘膦和氨甲基膦酸的平均回收率和相对标准偏差(RSD)分别为72.5%~113.6%和3.8%~16.2%,方法的检出限分别为2.0 μg/kg和3.0 μg/kg。该方法快速、灵敏,适用于稻米中草甘膦和氨甲基膦酸的同时分析。  相似文献   

14.
A simple and specific method using reversed‐phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) was investigated, which allowed the determination of residues of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in soybean samples. An aqueous extraction with liquid‐liquid partition followed by protein precipitation was performed before the LC/MS/MS determination. The quantitation of glyphosate and AMPA was performed in positive and negative ESI mode, respectively, using the multiple reaction monitoring (MRM) mode with three transitions for each analyte to enhance the specificity of the method and avoid false positives. The methodology reported in this work is capable of detecting residues of glyphosate and AMPA in soybean samples with limits of quantification of 0.30 and 0.34 mg kg?1, respectively. This alternative method has throughput advantages such as simpler sample preparation and faster chromatographic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A new sensitive spectrophotometric method for the determination of glyphosate herbicide in environmental and agricultural samples is developed. The reaction is based on diazotization followed by coupling of glyphosate with p-dimethyl amino benzaldehyde. The resulted complex absorption spectra was observed at λmax = 420 nm. The effects of other metal ions and pesticides were also tested for selective determination of glyphosate. The analytical parameters were optimized and have been successfully applied for determination of glyphosate in various environmental samples such as soil, water and vegetables. This method has a lower limit detection of 6 μg of glyphosate. Beer's law is obeyed over the concentration range of 6.0 μg–24.0 μg glyphosate in 25 mL of the final solution at 420 nm. The standard deviation and relative standard deviation calculated are 0.0055 and 1.023, respectively. The molar absorptivity of the colored system is 1.91 × 1010 L mol?1cm?1 and Sandell's sensitivity is found 0.408 × 10?5 μg cm?2. The proposed method is simple, sensitive, highly reproducible and time saving as compare to those complicated time consuming methods.  相似文献   

16.
Domoic acid (DA) is a naturally-occurring amino acid that causes a form of human intoxication called amnesic shellfish poisoning (ASP) following the consumption of shellfish. A rapid and sensitive HPLC-UV method has been developed for analysis of DA and analogues in shellfish without the need for SPE clean-up. Isocratic chromatographic separation of DA and its isomers from shellfish matrix interferences and from the prevalent amino acid, tryptophan, was achieved by careful control of the mobile phase pH. The optimised pH was found to be 2.5 when using a Luna(2) C18 column. Sample extraction was verified with control extracts from shellfish spiked at 5.0 and 10.0 g/g of DA and with certified reference material. The average extraction efficiency was 98.5%. The calibration, based on mussel tissue spiked with DA standard, was linear in the range 0.05–5.0 g/ml (r=0.9999) and the detection limit (signal:noise 3:1) was better than 25 ng/ml. The DA assay achieved good precision; %RSD=1.63 (intra-day, n=6) and %RSD=3.7 (inter-day, n=8). This method was successfully applied to a variety of shellfish species, allowing the rapid screening of a large number of samples per day (20–30), without the need for SPE clean-up. Quantitative data were obtained for shellfish samples containing domoic acid in the concentration range 0.25–330 g/g. Using the same chromatographic conditions, LC-MS3 was used to determine DA and its isomers, isodomoic acid D and epi-domoic acid, in scallop tissues.  相似文献   

17.
Automated dynamic liquid-liquid-liquid microextraction (D-LLLME) controlled by a programmable syringe pump and combined with HPLC-UV was investigated for the extraction and determination of 5 phenoxy acid herbicides in aqueous samples. In the extraction procedure, the acceptor phase was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. The repetitive movement of acceptor phase into and out of the hollow fiber channel facilitated the transfer of analytes into donor phase, from the organic phase held in the pore of the fiber. Parameters such as the organic solvent, concentrations of the donor and acceptor phases, plunger movement pattern, speed of agitation and ionic strength of donor phase were evaluated. Good linearity of analytes was achieved in the range of 0.5-500 ng/ml with coefficients of determination, r2 > 0.9994. Good repeatabilities of extraction performance were obtained with relative standard deviations lower than 7.5%. The method provided up-to 490-fold enrichment within 13 min. In addition, the limits of detection (LODs) ranged from 0.1 to 0.4 ng/mL (S/N = 3). D-LLLME was successfully applied for the analysis of phenoxy acid herbicides from real environmental water samples.  相似文献   

18.
Summary The object of this work was to optimize and validate an analytical method for the analysis of glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) in natural and drinking water, for sanitary control. The method uses a derivatization step which transforms glyphosate and AMPA into fluorescent products by reaction with 9-fluorenylmethylchloroformate (FMOC-Cl). The kinetics and yield of this reaction were studied by use of different samples. The derivatization products were injected directly into the liquid chromatograph and separated on an amino-functionalized silica gel column. The performance of the method (detection limit, quantification limit, linearity, and relative standard deviation) was studied and the results obtained showed the method was suitable for routine analysis of glyphosate and AMPA. An interlaboratory test with five laboratories confirmed that good results were obtained by use of this method.  相似文献   

19.
A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of five aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile and a buffer of NaH2PO4–H3PO4 (pH 1.5, containing 10 mM NaH2PO4) (85:15, v/v) as a mobile phase at a flow rate of 1 mL min−1. Aromatic amines were detected by UV absorbance at 254 nm. The linear range of amines was good (r2 > 0.998) and limit of detection (LOD) within 0.02–0.2 mg L−1 (S/N = 3). The retention mechanism for the analytes under the optimum conditions was determined to be a combination of adsorption, partition and ionic interactions. The proposed method was applied to the environmental water samples. Aromatic amines were isolated from aqueous samples using solid-phase extraction (SPE) with Oasis HLB cartridges. Recoveries of greater than 75% with precision (RSD) less than 12% were obtained at amine concentrations of 5–50 μg L−1 from 100 mL river water and influents from a wastewater treatment plant (WWTP). The present HILIC technique proved to be a viable method for the analysis of aromatic amines in the environmental water samples.  相似文献   

20.
A method based on matrix solid-phase dispersion (MSPD) is described for the quantitative extraction of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) from tomato fruit. After application of 120 microL of HNO3 1M to the sample, the dispersion column was packed with 0.5 g of sample blended into 1 g of NH2-silica. Two aqueous fractions were obtained. First, AMPA was eluted from the column using deionized water (F1), and then a NaH2PO4 0.005 M solution was used for the elution of glyphosate (F2). Cleanup of F1 and F2 was made by ion exchange chromatography on a SAX anion exchange silica. Determination was done by HPLC with fluorescence detection after precolumn derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). Mean recoveries calculated at fortification levels of 0.5 microg/g for glyphosate and 0.4 microg/g for AMPA were 87% and 78%, respectively. The relative standard deviations (n=7) for the total procedure were 10% and 16%. Detection limits were 0.05 microg/g for glyphosate and 0.03 microg/g for AMPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号