首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
Abstract— The dynamics of the flavin bound to the flavocytochrome b2 from Hansenula anomala were studied by fluorescence intensity quenching and quenching emission anisotropy with iodide. The fluorescence intensity of bound flavin is decreased 13-fold as compared to the free molecule. The remaining fluorescence decays with two lifetimes equal to 0.963 ± 0.040 and 4.635 ± 0.008 ns and fractional intensities of 0.036 ± 0.002 and 0.964 ± 0.002, respectively. The bimolecular diffusion constant was found to be 3.33 × 109 M -1 s-1 when the flavin is bound to the enzyme and 8.3 × 109 Mv s-1 when the flavin is free in solution. Thus, the flavin in flavocytochrome b2 is accessible to the solvent, but the amino acid residues of the binding site inhibit the diffusion of iodide. The rotational correlation time of bound flavin was found to be 2.015 ± 0.365 ns, a value higher than that (155 ps) of free flavin in solution. Our results are discussed on the basis of local dynamics of the flavin.  相似文献   

2.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

3.
Abstract— The binding of cytochrome b2 core (a monomer) to flavodehydrogenase (a tetramer), both purified from Hansenula anomala flavocytochrome b2, has been studied in the presence of 2- p -toluidinylnaphthalene-6-sulfonate (TNS). The association constant of the TNS-flavodehy-drogenase complex was found to be equal to 0.64 μ M −1 with a stoichiometry of one TNS per tetramer. Binding of cytochrome b2 core to flavodehydrogenase was followed by monitoring changes in the TNS fluorescence. Our results indicated that the binding is cooperative, with a stoichiometry of four cytochrome b2 cores per tetramer of flavodehydrogenase.  相似文献   

4.
Abstract— Reactions of the triplet state of lumiflavin (3LF) in water adjusted at pH 7.2 were reexamined by means of a Xe-flash photolysis and a laser photolysis. Measurements of the decay of 3LF were made on solutions of LF ranging in the concentration from 4 to 61 times 10-6 mol/dm3. A one-electron reduced and a one-electron oxidized species of lumiflavin (LF- and LF+) were produced in the first decay stage of 3LF with a high efficiency (0.6 ± 0.1) in a bimolecular triplet-triplet reaction. The product radicals (LFH- and LF+) quench 3LF very efficiently (3 ± 0.8 × 109 mol-1dm3 s-1) compared with LF in the ground state (> 2 × 107 dm3 mol-1).  相似文献   

5.
Abstract— The photochemical interaction between 8-methoxypsoralen (8-MOP) and the melanin precursorL–3,4-dihydroxyphenylalanine(dopaH2) has been studied using laser flash photolysis. Triplet excited 8-MOP was thus found to abstract electrons from dopaH2 ( k ∼ 2 × 109 dm3 mol-1 s-1) to form semireduced 8-MOP and semioxidised dopaH2.The technique of pulse radiolysis was used to establish separately the spectra of (a) the semi-reduced form of 8-MOP at pH 6.5 and (b) the semioxidised forms of dopaH2 at pH 6.5, 5.8, 4.6 and 3.3. The corresponding λmax and extinction coefficients found were: for 8-MOP at pH 6.5, λmax= 350 nm (= 9050 dm3 mol-1 cm-1); for dopa at pH 6.5, λmax= 305 nm (ε= 12000 dm3 mol-1 cm-1) and for dopaH at pH 3.3, λ= 305 nm (ε= 5900 dm3 mol-1 cm-1).  相似文献   

6.
Abstract— The triplet state of crocetin, which is a water soluble carotenoid, has been sensitized by psoralen. The triplet extinction coefficient, εT (73000 dm3 mol-1 cm-1 at 470 nm), the triplet-triplet spectrum and the quantum yield of triplet formation, φT (less than 1%) are reported in aqueous solution.
In order to calculate the extinction coefficient of crocetin it was necessary to obtain εT for psoralen in water (10000dm3 mol-1 cm-1 at 450 nm). This latter value was obtained using the complete conversion technique and is reported with the triplet-triplet spectrum.  相似文献   

7.
Abstract— The fluoroquinolone antibiotics can induce skin photosensitivity in some patients and this has been ascribed to the generation of reactive oxygen species, such as singlet oxygen (O2[1Δg]). We have studied the photochemical properties of the different ionized forms of the fluoroquinolone norfloxacin upon complexation with Mg2+ and Ca2+ ions, as it is proposed that the antibiotic exists mainly as a complex in the blood plasma. We found that the norfloxacin cation (pH < 6) shows no photodegradation after UVA irradiation and has a low quantum yield of O2(1Δg) generation. The norfloxacin cation does not complex. Ca2+ or Mg2+ ions; when these ions are added to the solution, we observed no changes in the fluorescence quantum yields (φflu) and singlet oxygen yields (φΔ). In contrast, the neutral (6 ± pH > 8.5) and anionic (pH > 9) forms of norfloxacin are able to complex calcium and magnesium, and their generation of O2 (1Δg) is decreased by complexation. The neutral zwitterionic form and the anionic form also quench singlet oxygen by both chemical and physical pathways regardless of complex formation, while physical quenching is observed for the cation. At pH > 7.4, norfloxacin photobleaches and complexation to Ca2+ and Mg2+ increases the rate at which photobleaching occurs. Thus, both the pH of the medium and complexation with metal cations may affect the phototoxic potential of this antibiotic.  相似文献   

8.
Abstract— The physical quenching of singlet molecular oxygen (1Δg) by amino acids and proteins in D2O solution has been measured by their inhibition of the rate of singlet oxygen oxidation of the bilirubin anion. Steady-state singlet oxygen concentrations are produced by irradiating the oxygenated solution with the 1–06 μm output of a Nd-YAG laser, which absorbs directly in the electronic transition 1Δg+ 1 v →3Σg-. The rate of quenching by most of the proteins studied is approximated by the sum of the quenching rates of their amino acids histidine, tryptophan and methionine, which implies that these amino acids in the protein structure are all about equally accessible to the singlet oxygen. The quenching constants differ from those obtained by the ruby-laser methylene-blue-photosensitized method of generating singlet oxygen, or from the results of steady-state methylene-blue-photosensitized oxidation, where singlet oxygen is assumed to be the main reactive species. The singlet oxygen quenching rates in D2O, pD 8, are (107ℒ mol-1 s-1): alanine 0–2, methionine 3, tryptophan 9, histidine 17, carbonic anhydrase 85, lysozyme 150, superoxide dismutase 260, aposuperoxide dismutase 250.  相似文献   

9.
By means of a variable low temperature cell holder, double beam spectra were obtained to temperatures as low as 88 K. As the temperature was lowered for a 3McP solution containing N-2,4,6,8,10-dodecapentaenylidene-n-butylamine (2) and phenol, three separate species could be detected, (i) The first spectrum taken at room temperature exhibits sharp fine structure and is the unperturbed spectrum of 2. As the temperature is lowered, a completely new spectrum with fine structure develops at slightly longer wavelength while simultaneously the old fine structure disappears. (ii) The new spectrum belongs to the H-bonded species formed between 2 and phenol. As temperature is further lowered, the second spectrum disappears as a new band develops at about 440 nm. (iii) This is the proton transferred species. The same phenomenon is repeated when p-nitrophenol and acetic acid are substituted for phenol. The -ΔH and ΔS values for the H-bonding process between phenol and 2 in 3MeP are 3900 cal mol-1 and 1.4 cal dgr-1 mol-1 respectively. Additional experiments firmly establish the process to be H-bonding with the phenolic hydroxyl group. Alcohol also H-bonds with 2 but does not proton transfer.  相似文献   

10.
Abstract— Electrochromism of oriented all- trans -β-apo-8'-carotenoic acid is studied in thin capacitors. The linear electrochromism is very strong, in contrast to that of symmetrical carotenoids. It is proportional to the first derivative of the absorption spectrum. The quadratic electrochromism can be described as a superposition of fractions proportional to the first and second derivatives of the absorption spectrum. The permanent dipole moment difference between the ground state and the excited state of the carotenoic acid molecule is Δμ= 3.6 × 10-29 C·m (±20%) (10.7 Debyes). The polarizability difference parallel to the long axis of the molecule is Δα|| = 1.17 × 10-37 C·m2·V-1 (±20%) (1050 Å3). Furthermore, the relative permittivity of the solid carotenoic ethyl ester is r= 3.5 ± 0.2.
Δμ is due to the polarizing force of the carboxylic group. This force is equivalent to a mean local electric field of F t≅3 × 106V/cm. Such a "local field" may also be exerted on a symmetrical carotenoid in the membrane of photosynthesis, e.g. by asymmetrical complex formation with a polarizing molecule. To obtain an effective permanent field of F p≅ 2 × 106V/cm across the membrane, as postulated in photosynthesis, a local field of F l≅ 5.5 × 105 V/cm would be sufficient. F p is shown to be directed from inside to outside of the thylakoid. To realize this, e.g. a positive polar (i.e. electron-attracting) complex partner of the carotenoid, located more to the inside of the thylakoid, can be postulated.  相似文献   

11.
Abstract— The inhibition by stable radicals having the structure (X-O)2NO of the initiated oxidation of ethyl benzene was studied. According to a formal kinetic scheme, verified by both theoretical computer calculations and an experimental chemiluminescence method, the rate constants of the interaction of peroxyradicals with iminoxy radicals were estimated at 60°C to be: 2.4 times 105 litres mol-1 s-1 for X = OCH3 and 3.4 times 105 litres mol-1 s-1 for X = OCH2CH3.  相似文献   

12.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

13.
Abstract The fluorescence quenching of indole, tryptophan, tryptamine and indole-3-acetic by aliphatic amino acids was studied. The bimolecular rate constant ( k q) for the deactivation of the excited state was determined. The k q values were in the range 0.6 × 108–1.6 × 109 M –1 S–1 and they increased in the order tryptophan < tryptamine < indole ≈ indole-3-acetic acid. When the rate constant was corrected for diffusion al effects a good linear correlation was found between the log ( k 'q) and the ionization equilibrium constant of the carboxylic group of the amino acid (p k a1). This was interpreted as arising from a charge transfer mechanism in which the indole moiety acts as an electron donor and the carbonyl group of the amino acid as the acceptor.
The activation parameter for the quenching processes were also determined. The ΔH values were in the range —4.0 to +4.0 kcal/mol and the ΔH in the range –7 to –37 e.u. For the systems with lower values of k q negative values for ΔH were observed. A good enthalpy-entropy compensation was found with an isokinetic temperature of 229 K. These results suggest that a common mechanism is operating for all the systems and that it involves the formation of an excited state complex between the indolic compound and the amino acid.  相似文献   

14.
Abstract— The triplet state characteristics (spectrum, lifetime and quantum yield) for four dye sensi tisers [methylene blue (MB), erythrosin (ER), haematoporphyrin (HP) and riboflavin (RF)] were determined in methanol by laser flash photolysis and singlet oxygen yields (0.60 to 0.48) from time-resolved measurements of the 1270 nm near infrared emission. The reaction of singlet oxygen with four long chain unsaturated phenyl esters [oleate (18: 1), linoleate (18: 2), linolenate (18: 3) and arachidonate (20: 4)] was followed quantitatively using the singlet oxygen luminescence technique and also, after continuous420–700 nm irradiation, by HPLC and other analysis of the isomeric product monohydroperoxides. The overall quantum yield of photooxidation (∼10-2) was shown to be consistent with the observed singlet oxygen quenching constants(2–12 times 104 dm3 mol-1 s-1) for the four esters studied and the singlet oxygen lifetime in methanol (τ∼ 9 μs). The isomer product distribution was interpreted in terms of a dual singlet oxygen and radical mechanism, the radical contribution increasing with sensitiser in the order ER = MB < HP ≪ RF, but also showing some dependence on substrate unsaturation. Evidence is presented for singlet oxygen quenching by MB and RF ( kO = 1.6 and 6.0 times 107 dm3 mol-1 s-1) and for the accelerated photobleaching of the dye sensitisers in the presence of the unsaturated esters.  相似文献   

15.
When the cations bound to purple membrane are removed it turns blue, and when this blue membrane is irradiated its color changes to pink. Irradiation of pink membrane leads to the reformation of blue membrane. We have determined that the quantum efficiency for the formation of pink membrane from deionized blue membrane is 1.6 ± 0.6 ± 10 4 at 0oC, pH 5.0. We also found that the quantum efficiency for the back photoconversion, i.e. the formation of blue membrane from pink membrane, is 8.8 ± 1.6 ± 10-3 at 0oC, 55 times greater than that of the forward photoconversion reaction. The extinction coefficients of the pink membrane and blue membrane were determined to be 44 500 ± 670 cm-1 M-1 at 491 nm and 54 760 ± 830 cm-1 M -1 at 603 nm, respectively, assuming light-adapted purple membrane is 63 000 cm-1 M -1 at 568 nm. The quantum efficiency for forming pink membrane from blue membrane is much lower than that for forming the photointermediate of the blue membrane's photocycle. Their relationship is similar to that of light-adaptation and photocycle of the dark-adapted purple membrane.  相似文献   

16.
The photoreaction between Pτ and the first detectable intermediate, lumi-R, of 124-kdalton oat phytochrome has been investigated at low temperatures. The temperature dependence of the quantum yields of the photoreactions, Pτ to lumi-R and lumi-R to Pτ, has been determined. From measurements over a temperature range from 119 to 155 K, an activation barrier of 3.6 ± 0.5 kJ mol 1 is found for the photoreaction of Pτ with 661-nm actinic light. A higher value (5.7 ± 0.7 kJ mol -1) is found for the photoreaction of lumi-R to Pτ. with 698-nm actinic light. Increased quantum yields are found in deuterated buffer solutions at low temperatures. The activation energies for deuterated phytochrome (3.2 ± 0.7 kJ mol–1 for Pτ with 661-nm irradiation and 6.2 ± 1.2 kJ mol-1 for lumi-R at 698-nm irradiation) are identical within the limits of error with those of protonated phytochrome. The lack of a deuterium effect for the activation energies favors the Z,E-isomerization rather than proton transfer or tautomerization for the chromophore photochemistry during Pτ⇄lumi-R conversion.  相似文献   

17.
SALT AND pH-DEPENDENT CHANGES OF THE PURPLE MEMBRANE ABSORPTION SPECTRUM   总被引:19,自引:0,他引:19  
Abstract —Purple membrane suspensions change their color to blue and the absorption maximum shifts to 608 nm when the membrane is deionized on a cation exchange column or when it is washed first with < 2N NaCl followed by deionized water. The deionized chromophore is essentially identical with the chromophore produced by lowering the pH of the native membrane to < 4.0 (p K < 3.0). However, the deionized membrane does not aggregate and can be obtained in the pure state. The original purple color of the membrane is restored by addition of around 1 m M Na+, K+ or 10 μ M Mg2+, Ca2+, Sr2+, Mn2+, Pb2+ or La2+ when the protein concentration is 5μ M . The required salt concentrations decrease with decreasing pH. Direct measurement of bound Ca2+ by atomic absorption spectroscopy yields a ratio of Ca2+ to protein of <2 and a binding constant of 1.4 × 106. Titration of the spectral change with salts at different pH values shows a linear relation between the pH and the logarithm of the salt concentration, with a 1:1 ratio for Na+ and 1:2 ratio for Ca2+. These relations are well predicted by Gouy-Chapman theory; however, the accompanying release of protons, changes of the CD spectrum, the complex kinetics of the spectral change during reconstitution with salt and preliminary X-ray diffraction results all suggest that conformational changes may be occurring in the protein.  相似文献   

18.
Abstract— A single-sample method for estimating energy distribution and redistribution among the two photosystems using fluorescence lifetimes and transients at 77 K is presented. In this method,α(the fraction of photons absorbed by photosystem I, PSI) is F1(α)/(F1(α)+ (τF 1(M)F 2(M)).F2(M)) where, F1(α) is the fluorescence intensity from PSI excited by photons initially absorbed by the latter, τF 1(M) and τF 2(M) are the maximum lifetimes of fluorescence from chlorophyll- a in PSI (1) and II (2), and, F2(M) is the maximum fluorescence intensity from PSII (P level). Analysis of the intensities and lifetimes of wavelength resolved fluorescence of thylakoids (pH 7.0), with and without cations, leads to the following conclusions: The addition of 10 m M Na+ to cation-depleted thylakoids (pH 7.0) increases α by ˜ 10%, while the subsequent addition of 10 m M Mg2+ leads to three principal concomitant changes (in the order of importance): a 50% decrease in PSII to PSI energy transfer, a 20% increase in other radiation-less losses, and a 10% decrease in α.  相似文献   

19.
Abstract— The fluorescent properties of the rare-earth ion, Tb3+ have been utilized to probe the nature of cation-binding sites associated with thylakoid membranes. At low concentrations (< 100μ M ), Tb3+ was observed to inhibit the increase in chlorophyll a fluorescence normally seen on adding 5 m M MgCl2 (or 100 m M NaCl) to isolated, broken chloroplasts. We also observed under these conditions, the appearance of a new band around 280 nm in the excitation spectrum of Tb3+ ion fluorescence. However, similar changes in Tb3+ fluorescence could be observed in the presence of a membrane-free preparation of chloroplast coupling factor protein (CF1). From this and other results it is concluded that changes in Tb3+ fluorescence reflect an association of the ion with CF1 followed by intermolecular transfer of excitation energy from protein ligands (possibly un-ionized tyrosine residues) to the lanthanide. The interaction of Tb3+ with sites which control chlorophyll a fluorescence does not seem to modify Tb3+ fluorescence, suggesting that in this case, simple membrane-bound ligands such as carboxyl or phosphate groups are involved.  相似文献   

20.
Abstract— Using the technique of flash photolysis-electron spin resonance, we have detected, by means of a kinetic analysis, a rapidly decaying signal in reaction center preparations from the R26 blue-green mutant of Rhodopseudomonas spheroides. This signal, which we designate Signal B3, is essentially the same as that seen previously in iron-free preparations. Signal B3 decays at 20°C with a 1/ e time of ˜ 3 ms and exhibits an activation energy of 5 ± 1 kcal mol-1 over the temperature range 0–30°C. Extraction with isooctane completely eliminates Signal B3, whereas readdition of exogenous ubiquinone-30 completely restores the signal. o -Phenanthroline has no effect on Signal B3. We discuss these results in terms of a model in which the primary acceptor is an iron-ubiquinone complex with excess ubiquinone serving as a secondary electron acceptor pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号