首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Summary The yttrium(III) bonding to organic substrates (oximes, -diketonates and (poly)amino-(poly)carboxylates) has been compared with that of the lanthanoid(III) cations. The complexation constants of Y3+ with the examined organic ligands are similar to those of some cations of the first half of the lanthanoid series, in contrast with the fact that the Y3+ ionic dimensions are similar to those of Ho3+. This has been explained by correlating the formation constants of the Y3+ and the lanthanoids(III) complexes by the equation logK 1=C ACB+E AEB, where the parametersC andE indicate the tendency of each Lewis acidA and Lewis baseB to undergo covalent or ionic bonding, and where the ratioH=E/C indicates the charge control on the bond formation tendency of each speciesA orB. The results are commented in terms of the utility of Y3+ in assisting organic reactions.
Bindung von Yttrium(III) an organische Liganden: Vergleich mit Lanthanoid(III)-Kationen
Zusammenfassung Es wurde die Bindung von Yttrium(III) an organische Substanzen [Oxime, -Diketonate und (Poly)Amino(poly)carboxylate] im Vergleich mit Lanthanoid(III)-Kationen behandelt. Die Komplexierungskonstanten von Y3+ sind ähnlich denen einiger Kationen der ersten Hälfte der Lanthanoidenserie; dies steht im Gegensatz zur Tatsache, daß die Dimensionen des Y3+-Ions denen des Ho3+ entsprechen. Die Erklärung wurde mittels der für die Bildungskonstanten der Y3+- und Lanthanoid(III)-Komplexe gültigen Gleichung logK 1=C ACB+E AEB gefunden, wobeiC undE Parameter sind, die die Tendenz der Lewis-SäurenA und der Lewis-BasenB zum Eingehen von kovalenten oder ionischen Bindungen charakterisieren und wo das VerhältnisH=E/C den Steuerungseffekt der Ladung auf die Bindungstendenz der SpeziesA oderB beschreibt. Die Ergebnisse werden im Hinblick auf den Nutzen von Y3+ zur Unterstützung organischer Reaktionen diskutiert.
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Dissociation constants (pKa) of trazodone hydrochloride (TZD⋅HCl) in EtOH/H2O media containing 0, 10, 20, 30, 40, 50, 60, 70, and 80% (v/v) EtOH at 288.15, 298.15, 308.15, and 318.15 K were determined by potentiometric techniques. At any temperature, pKa decreased as the solvent was enriched with EtOH. The dissociation and transfer thermodynamic parameters were calculated, and the results showed that a non‐spontaneous free‐energy change (ΔdissGo>0) and unfavorable enthalpy (ΔdissHo>0) and entropy (ΔdissSo<0) changes occurred on dissociation of trazodone hydrochloride. The free‐energy change or pKa varied nonlinearly with the reciprocal dielectric constant, indicating the inadequacy of the electrostatic approach. The dissociation equilibria are discussed on the basis of the standard thermodynamics of transfer, solvent basicity, and solute‐solvent interactions. The values of ΔtransGo and ΔtransHo increased negatively with increasing EtOH content, revealing a favorable transfer of trazodone hydrochloride from H2O to EtOH/H2O mixtures and preferential solvation of H+ and trazodone (TZD). Also, ΔtransSo values were negative and reached a minimum, in the H2O‐rich zone that has frequently been related to the initial promotion and subsequent collapse of the lattice structure of water. The pKa or ΔdissGo values correlated well with the Dimroth‐Reichardt polarity parameter ET(30), indicating that the physicochemical properties of the solute in binary H2O/organic solvent mixtures are better correlated with a microscopic parameter than the macroscopic one. Also, it is suggested that preferential solvation plays a significant role in influencing the solvent dependence of dissociation of trazodone hydrochloride. The solute‐solvent interactions were clarified on the basis of the linear free‐energy relationships of Kamlet and Taft. The best multiparametric fit to the Kamlet‐Taft equation was evaluated for each thermodynamic parameter. Therefore, these parameters in any EtOH/H2O mixture up to 80% were accurately derived by means of the obtained equations.  相似文献   

16.
Summary p-Toluene sulfonate-doped polypyrrole (PPyTos) powder has been characterized by inverse gas chromatography at various temperatures. We have used apolar n-alkanes and polar probes of differing acidity and basicity to interrogate the London dispersive and Lewis acid-base properties of PPyTos, respectively. We have found that the London component of the surface energy (γsd) is about 90 mJ · m−2 at 25°C and the acid-base contribution to the free energy of adsorption (ΔGa AB) for Lewis bases is higher than 8 kJ · mol−1. These results show that PPyTos is a high energy material and is capable of very strong specific acid-base interactions. Lewis acidity is, however, dominant and is shown to increase with temperature. The determination of the heats of adsorption for tetrahydrofuran and ethyl acetate enabled us to determine Drago’s EA, CA, EB and CB parameters. Whilst EA and CA are similar to those published for chloride-doped polypyrrole and rank PPyTos as a hard acidic species, the EB and CB values suggest that PPyTos is a very soft Lewis base.  相似文献   

17.
Infinite dilution activity coefficients and gas-to-ionic liquid partition coefficients were measured for a chemically diverse set of 48 or more organic solute probes dissolved in the ionic liquids 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide ([BzPy][Tf2N]) and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([ChxmPyrr][Tf2N]) in the temperature range from 323.15 to 373.15 K using inverse gas chromatography. Selectivities and capacities for different separation problems were calculated from the measured chromatographic data. The measured partition coefficients were correlated using mathematical equations based on the Abraham general solvation parameter model. The derived Abraham model correlations back-calculated the observed partition coefficients to within 0.12 log10 units.  相似文献   

18.
19.
Kinetics and solvent effects of the aquation of trans[Co(4‐(Etpy)4Cl2]+ have been studied in ethanol + water ranging from 0 to 60% (v/v) and urea + water of various solvent compositions up to 40% (w/w) of organic solvent. Thermodynamic activation parameters were computed and discussed in terms of the solvation effect. Isokinetic temperature within the experimental range revealed that the existence of the compensation effect arising from the solute–solvent interaction. Nonlinear plots of log k with D?1 suggest that changes in the solvent structure are an important factor that influences these rates. The influence of the added cosolvent on reactivity was analyzed in light of various simple and multiple regression equations using Kirkwood, ET(30), and Kamlet–Taft parameters. The obtained results showed that the solvation phenomenon plays a dominant role in the aquation. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 230–237, 2011  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号