首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we analyze the stability of a gravity wave generated on the separation surface of two immiscible liquids inside a moving container and perturbed by a capillary wave. Such a phenomenon is experimentally observed when the amplitude and the frequency of the motion imposed to the container attain certain values. The evolution of the system is described by the variational principle. We assume that the motion of the system is decomposed into two modes: the gravity mode and the capillary mode. With suitable scaling assumptions, it is possible to show that the evolution of the gravity mode is determined by the forcing motion, while the capillary mode is excited by the nonlinear interactions between the capillary and gravity modes. Finally, an analytic dispersion relation is obtained for the pulsation of the capillary mode. This relation is a function of several quantities, all depending on the capillary wave number and the characteristics of the exciting motion.  相似文献   

2.
In this work, we present a novel methodology for incorporating the effect of fibre surface morphology on liquid water transport in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs). Roughness features presented on the surface of the fibre are analysed using atomic force microscopy and are found to significantly impact the capillary pressure of liquid water pathways propagating through the GDL. A threshold capillary pressure was defined as the largest capillary pressure exhibited by the liquid water phase during the invasion of the throat. The threshold capillary pressures observed in the presence of roughness features are significantly greater than those in the absence of roughness features. Two-dimensional circumferential roughness models in cylindrical and converging-diverging throats are established, and an interfacial meniscus advancing algorithm is presented to determine the resulting threshold capillary pressures required for liquid water penetration. Revised Young–Laplace equations, which are particularly useful for pore network modeling, are suggested for calculating threshold capillary pressures that account for the effect of the roughness of throats with intrinsic contact angles greater than \(90^{\circ }\).  相似文献   

3.
Considering the separable phenomena of imbibition in complex fine porous media as a function of timescale, it is noted that there are two discrete imbibition rate regimes when expressed in the Lucas–Washburn (L–W) equation. Commonly, to account for this deviation from the single equivalent hydraulic capillary, experimentalists propose an effective contact angle change. In this work, we consider rather the general term of the Wilhelmy wetting force regarding the wetting line length, and apply a proposed increase in the liquid–solid contact line and wetting force provided by the introduction of surface meso/nanoscale structure to the pore wall roughness. An experimental surface pore wall feature size regarding the rugosity area is determined by means of capillary condensation during nitrogen gas sorption in a ground calcium carbonate tablet compact. On this nano size scale, a fractal structure of pore wall is proposed to characterize for the internal rugosity of the porous medium. Comparative models based on the Lucas–Washburn and Bosanquet inertial absorption equations, respectively, for the short timescale imbibition are constructed by applying the extended wetting line length and wetting force to the equivalent hydraulic capillary observed at the long timescale imbibition. The results comparing the models adopting the fractal structure with experimental imbibition rate suggest that the L–W equation at the short timescale cannot match experiment, but that the inertial plug flow in the Bosanquet equation matches the experimental results very well. If the fractal structure can be supported in nature, then this stresses the role of the inertial term in the initial stage of imbibition. Relaxation to a smooth-walled capillary then takes place over the longer timescale as the surface rugosity wetting is overwhelmed by the pore condensation and film flow of the liquid ahead of the bulk wetting front, and thus to a smooth walled capillary undergoing permeation viscosity-controlled flow.  相似文献   

4.
 The surface of the liquid issuing from a capillary subjected to the electric stresses deforms to an elongated jet which disrupts to a series of droplets. In the paper the detailed experimental studies of jet and drop formation from liquid issuing from a capillary maintained at high voltage of positive or negative polarity have been reported. The forms of the jet and the way it disrupts into droplets have been classified into the modes of spraying. A definition of the mode of spraying and the criteria for the mode classification, based on the geometrical form of the meniscus, jet or drop formation are given. Received: 16 September 1997/Accepted: 15 November 1998  相似文献   

5.
In this paper we report on the set-up and the performance of an experiment for the investigation of flow-rate limitations in open capillary channels under low-gravity conditions (microgravity). The channels consist of two parallel plates bounded by free liquid surfaces along the open sides. In the case of steady flow the capillary pressure of the free surface balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. A maximum flow rate is achieved when the adjusted volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces. The flow is convective (inertia) dominated, since the viscous forces are negligibly small compared to the convective forces. In order to investigate this type of flow an experiment aboard the sounding rocket TEXUS-41 was performed. The aim of the investigation was to achieve the profiles of the free liquid surfaces and to determine the maximum flow rate of the steady flow. For this purpose a new approach to the critical flow condition by enlarging the channel length was applied. The paper is focussed on the technical details of the experiment and gives a review of the set-up, the preparation of the flight procedures and the performance. Additionally the typical appearance of the flow indicated by the surface profiles is presented as a basis for a separate continuative discussion of the experimental results.  相似文献   

6.
We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of <100 nm. We investigate Rayleigh–Plateau-like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 μ thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.  相似文献   

7.
8.
The free-surface shape and cusp formation are analyzed by considering a viscous flow arising from the superposition of a source/sink and vortex below the free surface where the strength of the source and vortex are arbitrary. In the analysis, Stokes’ approximation is used and surface tension effects are included, but gravity is neglected. The solution is obtained analytically by using conformal mapping and complex function theory. From the solution, shapes of the free surface are obtained, and the formation of a cusp on the free surface is discussed. Above some critical capillary number with a sink, the free-surface shape becomes singular and an apparent cusp should form on the free surface below a real fluid. On the other hand, no cusp would occur for sources of zero or positive strength. Typical streamline patterns are also shown for some capillary numbers. As the capillary number vanishes, the solution is reduced to a linearized potential flow solution.  相似文献   

9.
Free surface shape and cusp formation are analyzed by considering two-dimensional viscous flow due to a line source or a line sink below the free surface where the strength of source/sink is given arbitrarily. In the analysis, the Stokes' approximation is used and surface tension effects are included, but gravity is neglected. The solution is obtained analytically by using conformal mapping and complex function theory. From the solution, shapes of the free surface are shown and the formation of a cusp on the free surface is discussed. As the capillary number decreases in negative, the free surface shape becomes singular and in a real fluid a cusp should form on the free surface below some negative critical capillary number. Typically, streamline patterns for some capillary numbers are also shown. As the small capillary number vanishes, the solution is reduced to a linearized potential flow solution.  相似文献   

10.
When a thin elastic structure comes in contact with a liquid interface, capillary forces can be large enough to induce elastic deformations. This effect becomes particularly relevant at small scales where capillary forces are predominant, for example in microsystems (micro-electro-mechanical systems or microfluidic devices) under humid environments. In order to explore the interaction between capillarity and elasticity, we have developed a macroscopic model system in which an initially immersed vertical elastic rod is raised through a horizontal liquid surface. We follow a combined approach of experiments, theory and numerical simulations to study this system. In spite of its apparent simplicity, our experiment reveals a complex phase diagram, involving large hysteretic behaviour. We employ Kirchhoff equations for thin elastic rods and use path-following methods from which we obtain a variety of equilibrium states and associated transitions that are in excellent qualitative and quantitative agreement with those observed experimentally.  相似文献   

11.
Two-dimensional Stokes flow due to a source and a sink of equal strength below the free surface is analyzed and free surface shape and cusp formation are discussed. The source-sink pair below the free surface are aligned vertical to the free surface. In the analysis, the Stokes' approximation is used and surface tension effects are included, but gravity is neglected. The solution is obtained by using conformal mapping and complex function theory. From the solution, typical free surface shapes are shown and formation of a cusp on the free surface is discussed. As the capillary number increases, the converging free surface shape becomes singular and tends to form a cusp for sufficiently large capillary number. Typically, streamline patterns for some capillary numbers are also shown. As the capillary number vanishes, the solution is reduced to the linearized potential flow solution.  相似文献   

12.
Elastocapillary phenomena involving elastic deformation of solid structures coupled with capillary effects of liquid droplets/films can be observed in a diversity of fields,e.g.,biology and microelectromechanical systems(MEMS).Understanding the physical mechanisms underlying these phenomena is of great interest for the design of new materials and devices by utilizing the effects of surface tension at micro and nano scales.In this paper,some recent developments in the investigations on elastocapillary phenomena are briefly reviewed.Especially,we consider the deformation,adhesion,self-assembly,buckling and wrinkling of materials and devices induced by surface tensions or capillary forces.The main attention is paid to the experimental results of these phenomena and the theoretical analysis methods based on continuum mechanics.Additionally,the applications of these studies in the fields of MEMS,micro/nanometrology,and biomimetic design of advanced materials and devices are discussed.  相似文献   

13.
This paper introduces a numerical method able to deal with a general bi-fluid model integrating capillary actions. The method relies first on the precise computation of the surface tension force. Considering a mathematical transformation of the surface tension virtual work, the regularity required for the solution on the evolving curved interface is weakened, and the mechanical equilibrium of the triple line can be enforced as a natural condition. Consequently, contact angles of the liquid over the solid phase result naturally from this equilibrium. Second, for an exhaustive representation of capillary actions, pressure jumps across the interface must be accounted for. A pressure enrichment strategy is used to properly compute the discontinuities in both pressure and gradient fields. The resulting method is shown to predict nicely static contact angles for some test cases, and is evaluated on complex 3D cases.  相似文献   

14.
15.
Motivated by the need to determine the dependencies of two-phase flow in a wide range of applications from carbon dioxide sequestration to enhanced oil recovery, we have developed a standard two-dimensional, pore-level model of immiscible drainage, incorporating viscous and capillary effects. This model has been validated through comparison with several experiments. For a range of stable viscosity ratios (M = μ injected,nwf/μ defending, wf ≥ 1), we had increased the capillary number, N c and studied the way in which the flows deviate from fractal capillary fingering at a characteristic time and become compact for realistic capillary numbers. This crossover has enabled predictions for the dependence of the flow behavior upon capillary number and viscosity ratio. Our results for the crossover agreed with earlier theoretical predictions, including the universality of the leading power-law indicating its independence of details of the porous medium structure. In this article, we have observed a similar crossover from initial fractal viscous fingering (FVF) to compact flow, for large capillary numbers and unstable viscosity ratios M < 1. In this case, we increased the viscosity ratio from infinitesimal values, and studied the way in which the flows deviate from FVF at a characteristic time and become compact for non-zero viscosity ratios. This crossover has been studied using both our pore-level model and micro-fluidic flow-cell experiments. The same characteristic time, τ = 1/M 0.7, satisfactorily describes both the pore-level results for a range of large capillary numbers and the micro-fluidic flow cell results. This crossover should lead to predictions similar to those mentioned above.  相似文献   

16.
Microscale Visual Study of End Effects at Permeability Discontinuities   总被引:1,自引:0,他引:1  
The physical effect of multiphase fluid distribution and flow at permeability boundaries has not been fully investigated, particularly at the pore scale (1–100 μm), although such behaviour can significantly affect the overall scaled-up reservoir trapping capacity and production performance. In this article, microscale physical models have been used to qualitatively study the pore scale flow events at permeability boundaries, both high to low and vice versa, to gain a better understanding of the role of these boundaries and water saturation on multiphase displacement behaviour at the pore scale. We have used etched glass models of stripes of large and small (a factor of two) pores with circular matrix. Capillary pressure, which is the controlling parameter is itself dependant on pore size and its spatial distribution, the magnitude of the interfacial tensions and the wettability between the fluids and the solid surface of the models. Sometimes, the only way the non-wetting fluid can penetrate the boundary is through a fortuitous leakage, whereby the presence of an initial saturation reduces the controlling capillary pressure. Examples are demonstrated including mechanisms of end-effects and how capillary boundary resistance (due to capillary forces) can be broken down and fluid movement across the boundary can develop. These micromodel experiments show vividly that connate water can assist in these processes, particularly oil trapping and leakage of water across a permeability boundary.  相似文献   

17.
Summary We study the time-evolution of periodical ripples of a viscous liquid at the plane free surface under the action of a distant pure straining flow. We neglect inertial forces (Stokes flow) and include surface tension effects. The solutions for a contracting surface and constant strain rate show that the ripples may develop near-cusps during a stage of the evolution, though later the free surface inevitably asymptotically tends to a smooth plane with vanishing ripples due to the action of capillarity. We obtain the condition for cusp formation in this intermediate stage in terms of the initial capillary number and aspect ratio. If the capillary number is kept constant, the surface tends to shrink through a succession of self-similar trochoidal shapes, whose aspect ratio is given by the capillary number. Received 23 March 1998, accepted for publication 23 July 1998  相似文献   

18.
We model the hydrodynamics of a shear cell experiment with an immiscible nematic liquid crystal droplet in a viscous fluid using an energetic variational approach and phase-field methods [86]. The model includes the coupled system for the flow field for each phase, a phase-field function for the diffuse interface and the orientational director field of the liquid crystal phase. An efficient numerical scheme is implemented for the two-dimensional evolution of the shear cell experiment for this initial data. The same model reduces to an immiscible viscous droplet in a viscous fluid, which we simulate first to compare with other numerical and experimental behavior. Then we simulate drop deformation by varying capillary number (independent of liquid crystal physics), liquid crystal interfacial anchoring energy and Oseen–Frank distortional elastic energy. We show the number of eventual droplets (one to several) and “beads on a string” behavior are tunable with these three physical parameters. All stable droplets possess signature quadrupolar shear and normal stress distributions. The liquid crystal droplets always possess a global surface defect structure, called a boojum, when tangential surface anchoring is imposed. Boojums [79], [32] consist of degree +1/2 and ?1/2 surface defects within a bipolar global orientational structure.  相似文献   

19.
基于建立的湿颗粒离散动力学模型,本文系统研究了钟摆状态下湿颗粒柱在重力驱动下的坍塌流动过程,主要考虑了颗粒粒径、液体表面张力系数和液体含量等参数对系统坍塌流动模式和动力学行为的影响。研究发现,在湿颗粒系统中,颗粒粒径和液体表面张力系数会改变颗粒间的毛细力大小,引起系统发生不同的坍塌流动模式,而液体含量仅定量影响颗粒坍塌后的堆积形态。在此基础上,进一步探讨了不同模式下系统坍塌流动行为与模型参数的相关性,发现无量纲Bond数是决定钟摆状态下湿颗粒物质坍塌流动动力学行为的本质因素。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号