首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building on both general and STEM‐specific teacher preparation principles, this program combined two traditional mathematics and science methods courses into one STEM block. Analysis compared preservice teachers in the traditional courses with those enrolled in the STEM block, investigating STEM teaching efficacy, reported and exhibited pedagogical practices, and STEM literacies using a pre‐post survey as well as analysis of lesson planning products. Linear regression models indicated that substantial growth was seen in both approaches but STEM block preservice teachers reported significantly greater gains in STEM teaching efficacy as compared with traditional‐route teachers. Lesson planning artifacts also demonstrated increased facilitation of STEM literacies, with specific attention to content integration, engineering and design, and arts inclusion. Technology and computational thinking emerged as areas for further growth and clarification in STEM teacher education models. Findings contribute to a growing research base on developing the STEM teacher workforce.  相似文献   

2.
Nationally, there is a steadily increasing emphasis on the improvement of STEM education. This includes the integration of STEM subjects that have been traditionally taught separately, making it critical that prospective STEM educators are equipped to teach using integrated STEM approaches. Connected, an important challenge is providing preservice STEM teachers with experiences in which they can develop an understanding of how to optimize learning through integrated STEM instruction. A potentially effective way to foster this conceptualization is through video analysis of integrated STEM practices. To investigate this possibility, here we present a semester‐long study focused on engaging preservice STEM teachers with observing, analyzing, and reflecting about instructional STEM practices through a video‐based intervention. Findings suggest that viewing and reflecting on integrated STEM practices may enhance preservice STEM teachers' conceptions of integrated STEM approaches, representing a practical method of preservice STEM teacher professional development.  相似文献   

3.
Young children are capable of engaging in STEM investigations when they are guided by skilled and knowledgeable teachers. However, many elementary teachers may lack sufficient STEM content knowledge and report feeling unprepared to teach STEM content. Two university faculty members in mathematics and science education, worked to cultivate and advance two designated Elementary STEM‐Focused professional development schools through a two year series of an after‐school STEM professional development (PD) Program. As the STEM PD Program progressed, it became evident that teachers were interested in and needed more experiences with the elements of the engineering process for young learners. With this in mind, several of the PD sessions were designed to highlight the engineering process and allow teachers to experience various activities that would engage young learners. To examine how this focus on the engineering process impacted the teachers in this STEM PD Program, a research study was organized during year two of the STEM PD Program. The results of this study provide evidence that this program had a positive influence on the teacher participants’ engineering teacher efficacy and implementation of engineering lessons and activities within their classrooms.  相似文献   

4.
Although STEM is at the forefront of many educational initiatives, little is known about various professionals’ perceptions of STEM. This mixed‐methods study surveyed 164 preservice teachers, inservice teachers, administrators, informal educators, and STEM professionals. Quantitative and qualitative questions on the survey elicited participants’ perceptions of STEM, STEM support, and STEM careers. Quantitative analysis revealed that profession influenced understandings of STEM, importance of STEM, support for STEM, and perceptions of STEM career opportunities. Qualitative analysis provided rich explanations for the differences in perceptions among professions. This study suggests that science teacher educators need to ensure preservice teachers have understandings of STEM and STEM careers, K‐16 educators need to emphasize the current importance of STEM, and administrators and policymakers need to align visions of STEM with curriculum and pacing guides so teachers feel supported in their STEM endeavors.  相似文献   

5.
This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design‐based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education. Participants included 23 STEM teachers from six schools (three rural, two suburban, and one urban). Data were gathered via lesson implementation plans and classroom observations. Teachers demonstrated strength in planning for standards‐ and engineering design‐based lessons, incorporating engineering practices within their respective implementation plans, and aligning their plans with content and design process standards. Missing from their plans was attention to science concepts and their placement, use, and application within a design task. Classroom observations indicated that the teacher participants gave priority to “front loading,” the design process by concentrating more of their instructional time on problem identification and planning and less time on testing designs, communicating performance results, and redesigning. Measures utilized in this study provided insight into the content of teachers' planning and subsequent instruction and suggest potential for capturing content planning in the context of classrooms in which teachers are attempting to integrate novel curriculum, such as the new standards for engineering practices.  相似文献   

6.
Science, technology, engineering, and mathematics (STEM) integration is a desired outcome according to Next Generation Science Standards. However, learning to teach integrated STEM content has been challenging for teachers. Consequently, the purpose of this qualitative study was to describe how 16 preservice teachers enrolled in a mathematics methods course created integrated STEM lesson plans that incorporated an authentic engineering problem. Content analysis of the completed integrated STEM lesson plans used the Quality K-12 Engineering Education Framework to identify any characteristics of engineering. We found that 15 of 16 preservice teachers demonstrated at least an emerging ability to create an integrated STEM lesson that contained an engineering problem, constraints, a prototype or model, model testing, and data collection and analysis related to the model. We concluded that giving preservice teachers opportunities to experience engineering design problems could better prepare them to design and implement integrated STEM education in their classrooms. The findings from this study have practical implications for mathematics methods teacher educators who teach the pedagogy behind STEM education. This study also has theoretical implications because socially situated learning theory was extended to Model-Eliciting Activities and connected them to the K-12 Framework for Quality Engineering Education.  相似文献   

7.
The study was conducted to examine preservice, elementary teachers' efficacy for teaching science and mathematics as compared with other elementary content. The instrument assessed efficacy for teaching (EFT) five elementary content areas: science, mathematics, reading, classroom management, and general instruction. Three hundred twenty‐five preservice, elementary teachers completed a 15‐item instrument assessing efficacy for teaching in these five areas. The instrument was found to be valid and reliable. Overall group results indicated participants' EFT science and mathematics were lower than for teaching other areas. Intra‐individual patterns showed there were six clusters including a group with low EFT mathematics and a group with low EFT mathematics and science. Implications for preservice, teacher preparation opportunities and experiences are discussed.  相似文献   

8.
The purpose of this study is to provide an in‐depth analysis of attitudes and perceptions related to the integration of mathematics, science, and technology education of preservice teachers preparing to teach STEM disciplines. Longitudinal data by individual cohort and across 7 years of the Integrated Mathematics, Science, and Technology (MSAT) Program are reported, analyzed, and interpreted to help design and improve preservice teacher education programs and improve teaching and learning in STEM classrooms. Results of quantitative analyses indicate that there was generally no change in preservice teacher attitudes and perceptions related to the value of the integration of mathematics, science, and technology education—they clearly valued integration at the onset and at the completion of the program. However, there was a significant change in preservice teacher attitudes and perceptions related to integration feasibility in terms of inefficiency and difficulty. Implications for teacher education programs include: (a) more exposure to concepts, processes, and skills in STEM that are similar, analogous, complementary, or synergistic; (b) familiarity with instructional strategies and access to resources; (c) deeper understanding of content across STEM; and (d) strategies for collaboration and team work to make integrated instruction time more efficient and less difficult to manage.  相似文献   

9.
The new standards for K–12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large‐scale, urban elementary‐focused science, technology, engineering, and mathematics (STEM) collaboration between a large urban school district, various STEM‐focused community stakeholders, and a research‐focused private university. The collaboration includes the development of an integrated STEM curriculum for grade K–5 with accompanying teacher professional development. This mixed‐methodology study describes findings from focus group interviews and a survey of teachers from Title I elementary schools. Findings suggest the importance of the following critical features of professional development: (a) coherence, (b) content focus, (c) active learning, (d) collective participation, and (e) duration to the success of large‐scale STEM urban elementary school reform  相似文献   

10.
Research indicates there is a need for teachers to experience multiple mastery experiences with engineering teaching in order to improve teaching engineering self‐efficacy. To prepare future K–5 teachers to teach the engineering design process, one science methods course integrated 2‐day engineering mini‐units into the class meeting and school‐based field experience. The preservice teachers participated as students in an exemplar mini‐unit and then designed their own mini‐unit, which they later taught to K–5 students. Pre‐ and post‐testing of the preservice teachers indicated significant improvement in engineering pedagogical content knowledge self‐efficacy, engagement self‐efficacy, and disciplinary self‐efficacy. Significant improvement was not observed in engineering outcome expectancy.  相似文献   

11.
Engineering design‐based STEM integration is one potential model to help students integrate content and practices from all of the STEM disciplines. In this study, we explored the intersection of two aspects of pre‐college STEM education: the integration of the STEM disciplines, and the NGSS practice of engaging in argument from evidence within engineering. Specifically, our research question was: While generating and justifying solutions to engineering design problems in engineering design‐based STEM integration units, what STEM content do elementary and middle school students discuss? We used naturalistic inquiry to analyze student team audio recordings from seven curricular units in order to identify the variety of STEM content present as students justified their design ideas and decisions (i.e., used evidence‐based reasoning). Within the four disciplines, fifteen STEM content categories emerged. Particularly interesting were the science and mathematics categories. All seven student teams used unit‐based science, and five used unit‐based mathematics, to support their design ideas. Five teams also applied science and/or mathematics content that was outside the scope of the units' learning objectives. Our results demonstrate that students integrated content from all four STEM disciplines when justifying engineering design ideas and solutions, thus supporting engineering design‐based STEM integration as a curricular model.  相似文献   

12.
Problem-based learning (PBL) and science, technology, engineering, and mathematics (STEM) are two acronyms widely visible in education literature today. However, few studies have explored these in connection with one another, specifically with regard to teacher preparation. This study investigated how 47 prospective elementary teachers developed PBL units and how they integrated STEM and other disciplines into those units. It also addressed the affordances and constraints of integrated STEM as perceived by the prospective elementary teachers. Data sources in this multimethod study included PBL units and interviews. Findings revealed that all of the units integrated at least two of the STEM disciplines, as well as literacy, in a variety of ways. The prospective teachers articulated perceived benefits of integrated STEM, such as: making connections across content areas, preparing students for the real world, teaching students that failure is not a bad thing, and providing future opportunities. They also addressed perceived barriers of integrated STEM, such as: having limited experience with the content, diminishing the effect of individual content areas, and needing better curriculum alignment. Overall, this study provides evidence that PBL can be a pedagogical approach to integrate STEM. Implications for teachers, teacher educators, and curriculum specialists are discussed.  相似文献   

13.
Many members of the mathematics and science education community believe that the integration of mathematics and science enhances students' understanding of both subjects. Despite this belief, attempts to integrate these subjects have frequently been unsuccessful. This study examines the development and implementation of a team‐taught integrated middle level mathematics and science methods course. The data presented in this study were collected from three groups of preservice teachers who were enrolled in a grades 5–8 middle level teacher certification program in Connecticut from 1998–2000. The data analysis indicates that preservice teachers appreciated the emphasis on integration used in the course, but at the same time when concepts did not integrate easily they were frustrated. Despite this frustration, the preservice teachers' understanding of integration was enhanced as a result of the course.  相似文献   

14.
Mathematics and science have similar learning processes (SLPs) and it has been proposed that courses focused on these and other similarities promote transfer across disciplines. However, it is not known how the use of these processes in lessons taught to children change throughout a preservice teacher education course or which are most likely to transfer within and between disciplines. Three hundred and ninety lesson plans written by 113 preservice teachers (PSTs) from 10 sections of an elementary mathematics/science methods course were analyzed. PSTs taught an eight‐lesson sequence to children: five science lessons followed by three mathematics lessons. The findings suggested that: (a) PSTs needed to only teach three mathematics lessons, after five science lessons, to reach the same number of SLPs used in the five science lessons; (b) some SLPs are highly correlated processes (HCPs) and are more likely to transfer within and between science and mathematics lessons; and (c) PSTs needed to teach no mathematics lessons, after four science lessons, to reach the same number of HCPs used in the four science lessons. Implications include centering courses on multiple and varied representations of learning processes within problem‐solving, and HCPs may be essential similarities of problem‐solving which promote transfer.  相似文献   

15.
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision‐making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their classrooms and the interactions that occur between the teachers and curriculum during that process. This qualitative study utilized a comparative case study approach to understanding the decision‐making process of three elementary teachers enacting the same lesson. Analysis of the interactions revealed that the teachers' perceptions of student ability, their pedagogical design capacity, and time were influences that impacted implementation. These findings have implications for STEM‐focused professional development of elementary teachers.  相似文献   

16.
17.
18.
This study explored how mathematics content and methods courses for preservice elementary and middle school teachers could be improved through the integration of a set of instructional materials based on the National Assessment of Educational Progress (NAEP). A set of eight instructional modules was developed and tested. The study involved 7 university instructors and 542 preservice teachers (PSTs) from three different universities. A quasi‐experimental nonequivalent groups design was used for this study in which the following data sources were collected and analyzed. Three versions of a Learning Mathematics for Teaching test were given to assess PSTs‘ mathematical content knowledge for teaching: (a) Elementary Number Concepts and Operations—Content Knowledge; (b) Elementary Geometry—Content Knowledge; and (c) Middle School Number Concepts and Operations—Content Knowledge. In addition, the Mathematics Teacher Efficacy Beliefs Instrument was given to assess PSTs’ teacher efficacy beliefs. Test results were analyzed using paired samples t‐tests. Findings suggest that use of instructional materials, based on NAEP, with PSTs results in increases in their mathematical content knowledge for teaching and in their teaching efficacy beliefs.  相似文献   

19.
This study examined preservice teachers' mathematics self‐efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self‐Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and the Illinois Certification Testing System (ICTS) Basic Skills Test. The results indicate that preservice teachers' mathematics self‐efficacy is positively correlated to their personal mathematics teaching efficacy. In addition, their mathematical performance is related to their mathematics self‐efficacy and mathematics teaching efficacy. In regard to affecting student outcomes, only those preservice teachers who are very confident in their ability to teach believe they can have an effect on their students. Implications on teacher education programs are discussed.  相似文献   

20.
The purpose of this study was to further the understanding of how preservice teachers construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science in a school‐based setting and the extent of knowledge construction. Evidence of knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. The methods course was content‐specific with instruction in elementary mathematics and science. Learning experiences were based on national standards with a constructivist instructional approach and immediate access to field experiences. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge. Learning venues were discovered to be the conduits of learning in a situated learning context. As in this study, content‐specific, school‐based experiences may afford preservice teachers greater opportunities to focus on content and instructional strategies at deeper levels; to address anxieties typically associated with the teaching of elementary mathematics and science; and to become more confident and competent teachers. Gains in positive attitudes and confidence in teaching mathematics and science were identified as direct results of this experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号