首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

5.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

8.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
In this paper, according to the knowledge characteristics of the copper group elements, the reform of the teaching contents and teaching methodology has been analyzed in detail in order to enhance students' interest in learning chemistry, make students master the chemical knowledge, and improve the teaching quality.  相似文献   

12.
对化学类专业本科生基础无机化学课程教学内容的选择提出科学性、系统性、重要性和新颖性四项原则。对讲授方法,提出既要传授知识,让学生打好化学理论基础,获得化学物质世界初步的全面图像,又要注重引导学生掌握逻辑思维方法,提高持续学习的能力。简要介绍了相应的教学实践活动。  相似文献   

13.
吴宁晶  华静 《大学化学》2016,31(8):56-59
以有机化学、物理化学为基础,构建高分子化学的理论知识体系,通过将课堂教学与实验和生产实践相结合,拓展学生在高分子化学前沿领域的专业知识,强调发展学生的素质教育与创新精神,进而提高学生的学习兴趣。  相似文献   

14.
普通化学教学改革与探索   总被引:1,自引:0,他引:1  
结合近几年的普通化学教学实践,我们分析了普通化学教学实践过程中存在的一些问题,并提出了培养学生的创新能力,不断更新教学内容,将理论教学与实验教学相结合等几方面建议。  相似文献   

15.
分析化学是化学及其相关专业的专业基础课程,内容丰富而繁杂,科学可行的教学方法是提高教学质量的保证。本文作者对多年来分析化学课程教学方法探索和实践进行了经验总结,包括重视第一节课教学,让学生对本课程"一见钟情";训练分析化学学科的微观思维;巧用形象比喻,加强对知识的理解和领悟;关注知识的层次和逻辑结构,突出重点知识;融合微观和宏观思维,快速掌握知识体系;展示分析化学学科之美;循环重复教学法,提高教学效果;立足课本且走出课本,扩大知识面和提高解决问题的能力等。  相似文献   

16.
This paper expounds the importance of logical thinking in the teaching of analytical chemistry and shows the internal logical relationship of the knowledge of analytical chemistry. Based on the logical relationship, the teaching design of the main content of analytical chemistry is carried out. In teaching practice, twice as much can be accomplished with half the effort with deep thinking and effective use of the progressive logical relationship inside and between chapters, and focusing on combing the main line of knowledge points. Then, the teaching difficulty can be effectively reduced and the students' learning interest and the teaching effect can be improved. At the same time, the rigorous logical thinking ability and scientific research innovation consciousness of the students can be trained.  相似文献   

17.
论述了物理化学教学在化学类专业人才培养中的重要地位,说明了制订物理化学教学内容和教学要求建议的必要性和制订的依据,阐述了该建议的使用原则。基于产出导向的理念,从知识、能力和素质三个方面明确了化学类专业物理化学理论相关教学的基本内容和要求。对当前我国物理化学教学研究、教学建设、教材建设和教学效果评价具有一定的指导作用。  相似文献   

18.
《高分子化学》教学中有机化学知识的有效利用探索   总被引:1,自引:0,他引:1  
高分子化学和有机化学紧密相连,后者是学习前者的基础.在高分子化学教学中,有效利用有机化学知识解释聚合物的一些概念,将有助于学生更好的理解和掌握高分子化学知识.本文根据教学实践,介绍了几点利用有机化学知识帮助解释高分子化学中的概念或反应的实例,并对教材中存在的疑点提出了自己的看法.  相似文献   

19.
高分子化学课程教学改革与实践初探   总被引:1,自引:0,他引:1  
高分子化学是高分子材料专业最重要的专业技术基础课之一,既包含了理论基础知识,又注重实验教学。《高分子化学》作为贵州大学高分子材料与工程专业的主干课之一,作者针对高分子化学课程教学内容多、概念多、推导多、关联多等问题,对高分子化学教学现状进行了分析,从教学体系、教学内容、教学方法、考核方式、教材编写等多个方面提出了课程教学改革的一些见解。实践表明,高分子化学课程教学改革与实践探索在激发学生兴趣,提高学生的综合能力上已经初见成效。  相似文献   

20.
以现代信息技术为基础的智慧课堂已成为教学中的得力助手,但目前在基础化学中的应用仍处于起步阶段。本文从理论和实验两方面探索智慧课堂在分析化学教学中的实践过程和作用效果,旨在实现碎片化教学模式下,引导学生自我构建系统化知识体系,并最终获取完整学习的目的。同时,能在有限学时内迅速提高学生严谨的科学意识、规范的操作技能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号