首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
Recent advances in synthetic chemistry have led to the discovery of "superoxidized" iron centers with valencies Fe(v) and Fe(vi) [K. Meyer et al., J. Am. Chem. Soc., 1999, 121, 4859-4876; J. F. Berry et al., Science, 2006, 312, 1937-1941; F. T. de Oliveira et al., Science, 2007, 315, 835-838.]. Furthermore, in recent years a number of high-valent Fe(iv) species have been found as reaction intermediates in metalloenzymes and have also been characterized in model systems [C. Krebs et al., Acc. Chem. Res., 2007, 40, 484-492; L. Que, Jr, Acc. Chem. Res., 2007, 40, 493-500.]. These species are almost invariably stabilized by a highly basic ligand X(n-) which is either O(2-) or N(3-). The differences in structure and bonding between oxo- and nitrido species as a function of oxidation state and their consequences on the observable spectroscopic properties have never been carefully assessed. Hence, fundamental differences between high-valent iron complexes having either Fe=O or Fe=N multiple bonds have been probed computationally in this work in a series of hypothetical trans-[FeO(NH(3))(4)OH](+/2+/3+) (1-3) and trans-[FeN(NH(3))(4)OH](0/+/2+) (4-6) complexes. All computational properties are permeated by the intrinsically more covalent character of the Fe=N multiple bond as compared to the Fe=O bond. This difference is likely due to differences in Z* between N and O that allow for better orbital overlap to occur in the case of the Fe=N multiple bond. Spin-state energetics were addressed using elaborate multireference ab initio computations that show that all species 1-6 have an intrinsic preference for the low-spin state, except in the case of 1 in which S=1 and S=2 states are very close in energy. In addition to M?ssbauer parameters, g-tensors, zero-field splitting and iron hyperfine couplings, X-ray absorption Fe K pre-edge spectra have been simulated using time-dependent DFT methods for the first time for a series of compounds spanning the high-valent states +4, +5, and +6 for iron. A remarkably good correlation of these simulated pre-edge features with experimental data on isolated high-valent intermediates has been found, allowing us to assign the main pre-edge features to excitations into the empty Fe d(z(2)) orbital, which is able to mix with Fe 4p(z), allowing an efficient mechanism for the intensification of pre-edge features.  相似文献   

12.
为提高Fe/Al-PILC催化剂的SCR脱硝的低温活性,采用Cu对Fe/Al-PILC催化剂进行改性。采用超声浸渍法合成系列xCu-Fe/Al-PILC催化剂,通过XRD、N2吸附-脱附、H2-TPR、UV-vis、XPS、Py-FTIR等系列技术手段进行表征。在固定床微反应器上进行C3H6的选择性催化还原NO的实验。结果表明,经过铜改性后的xCu-Fe/Al-PILC催化剂有效解决了Fe/Al-PILC催化剂低温SCR活性不足的问题,同时提高了中高温活性。催化剂在200-500℃能够实现80%以上脱硝效率,其中,0.13Cu-Fe/Al-PILC在250-500℃实现了90%以上NO转化率,并在250℃达到最高脱硝效率93%。XRD、N2吸附-脱附结果表明,经过铜改性的催化剂可以提供更多反应活性位,提高反应速率。H2-TPR结果表明,掺杂铜使催化剂获得低温还原能力,同时增强了中高温还原能力。UV-vis、XPS结果表明,铜掺杂不仅使铁获得更高氧化态,同时产生了更多低温活性物质孤立Fe3+。Py-FTIR结果表明,催化剂表面同时存在Lewis酸和Brønsted酸,Lewis酸是SCR反应活性中心。  相似文献   

13.
Extensive study of the electronic structure of Fe‐NO complexes using a variety of spectroscopic methods was attempted to understand how iron controls the binding and release of nitric oxide. The comparable energy levels of NO π* orbitals and Fe 3d orbitals complicate the bonding interaction within Fe? NO complexes and puzzle the quantitative assignment of NO oxidation state. Enemark–Feltham notation, {Fe(NO)x}n, was devised to circumvent this puzzle. This 40‐year puzzle is revisited using valence‐to‐core X‐ray emission spectroscopy (V2C XES) in combination with computational study. DFT calculation establishes a linear relationship between ΔEσ2s*‐σ2p of NO and its oxidation state. V2C Fe XES study of Fe? NO complexes reveals the ΔEσ2s*‐σ2p of NO derived from NO σ2s*/σ2p→Fe1s transitions and determines NO oxidation state in Fe? NO complexes. Quantitative assignment of NO oxidation state will correlate the feasible redox process of nitric oxide and Fe‐nitrosylation biology.  相似文献   

14.
Electronic and geometrical structures of iron clusters with associative (FeNO, Fe2NO, Fe3NO, Fe4NO, Fe5NO, and Fe6NO) and dissociative (OFeN, OFe2N, OFe3N, OFe4N, OFe5N, and OFe6N) attachments of NO, as well as the corresponding singly negatively and positively charged ions, are computed using density functional theory with generalized gradient corrections. Both types of isomers are found to be stable and no spontaneous dissociation was observed during the geometry optimizations. The ground states correspond to dissociative attachment of NO for all iron clusters Fe(n), except for Fe and Fe+. All of the OFe(n)N clusters have ferrimagnetic ground states, except for OFe2N, OFe2N-, OFe4N, and OFe4N-, which prefer the ferromagnetic coupling. In the ferrimagnetic states, the excess spin density at one iron atom couples antiferromagnetically to the excess spin densities of all other iron atoms. Relative to the high-spin Fe(n) ground state, the lowest energy ferrimagnetic state quenches the total magnetic moments of iron clusters by 7, which is to be compared with a reduction in the magnetic moment of one in the lowest energy ferromagnetic states. Dissociation of NO on the iron clusters has a pronounced impact on the energetics of reactions; the Fe(n)NO+CO-->Fe(n)N+CO2 channels are exothermic while the OFe6N+CO--> Fe6N+CO2 channels are nearly thermoneutral.  相似文献   

15.
We present here a first theoretical characterization of iron(V) (S = (3)/(2)) and iron(VI) (S = 0) porphyrin intermediates. The Fe(V) calculations exhibit exceptionally narrow convergence radii and we believe that for this reason they have long eluded researchers working on high-valent iron intermediates. The Fe(V)-N(nitrido) bond distance in the DFT(PW91/TZP) optimized geometry of Fe(V)(P)(N) is 1.722 A, comparable to and slightly longer than the Fe(IV)-O bond distance of 1.684 A in Fe(IV)(P)(O) and the Fe(IV)-N(imido) bond distance of 1.698 A in Fe(IV)(P)(NH). In contrast, the Fe(VI)-N(nitrido) bond distances in [Fe(VI)(P)(N)](+) (S = 0) and Fe(VI)(P)(N)(F) (S = 0) are dramatically shorter, 1.508 and 1.533 A, respectively, consistent with the formal triple bond character of the Fe(VI)-N(nitrido) bond. The nitrido ligand appears to be uniquely capable of stabilizing a "true" Fe(V) center, in the sense defined in the paper. All three unpaired electrons in Fe(V)(P)(N) are completely localized on the Fe(V)-N(nitrido) axis, with the Fe and N gross atomic spin populations being 1.579 and 1.550, respectively. In contrast, an axial ligand set consisting of an oxide and a fluoride do not stabilize an Fe(V) ground state but favor an electronic structure best described as an Fe(IV)-oxo porphyrin pi-cation radical.  相似文献   

16.
This work aims to study the effect of redox property and surface morphology of perovskite oxides on the catalytic activity of CO oxidation and CO+NO reduction, with the redox property being tuned by doping Fe at the Co site of La0.8Sr0.2Co1-xFexO3 and the surface morphology being modified by supporting La0.8Sr0.2CoO3 on various mesoporous silicas(i.e., SBA-16, SBA-15, MCF). Characteristic results show that the Fe doping improves the match of redox potentials, and SBA-16 is the best support of La0.8Sr0.2CoO3 when referring to the oxidation ability(e.g., the Co3+/Co2+ molar ratio). A mechanism for oxygen desorption from perovskite oxides is proposed based on O2-TPD experiments, showing the evolution process of oxygen released from oxygen vacancy and lattice framework. Catalytic tests indicate that La0.8Sr0.2CoO3 is the best for CO oxidation, and La0.8Sr0.2FeO3 is the best for CO+NO reduction. The mechanism of CO+NO reduction changes as the reaction temperature increases, with XNO/XCO value decreases from 2.4 at 250 ℃ to 1.0 at 400 ℃. As for the surface morphology, La0.8Sr0.2CoO3 supported on SBA-16 possesses the highest surface Co3+/Co2+ molar ratio as compared to the other two, and shows the best activity for CO oxidation.  相似文献   

17.
The molecular structure of the formal iron(IV) porphyrinate derivative, [[Fe(TTP)]2N]SbCl6 (TTP = tetratolylporphyrinate), is reported. The structural parameters are compared to the previously reported species [Fe(TPP)]2N, in which the iron oxidation state is +3.5. Both the equatorial and axial bond distances in [[Fe(TTP)]2N]SbCl6 are slightly shortened and consistent with an increased formal charge on iron. The value for the axial Fe-N distance is 1.6280(7) A, and the average value of the equatorial Fe-Np distances is 1.979(5) A. The M?ssbauer isomer shift decreases upon oxidation, again consistent with an increase in formal charge. Values for the isomer shift at room temperature are -0.13 mm/s for [[Fe(TTP)]2N]SbCl6 and 0.04 mm/s for [Fe(TTP)]2N. Crystal data for [[Fe(TTP)]2N]SbCl6 are as follows: orthorhombic, space group Fddd, Z = 8, a = 23.689(2) A, b = 31.056(3) A, c = 22.7788(18) A.  相似文献   

18.
We report on the characterization of an isomorphously substituted Fe-MCM-22 sample containing both Fe and Al in framework positions (Si/Fe = 44, Si/Al = 25). XANES spectroscopy was used to study the evolution of Fe sites as a consequence of thermal activation at high temperature (1073 K) and subsequent oxidation with N2O. The results were compared to those obtained in the same conditions on a well-known Fe-silicalite sample (Si/Fe = 68, Si/Al = infinity). In both samples, thermal activation causes migration of a fraction of Fe ions from framework to extraframework positions, this migration being accompanied by a reduction of Fe3+ to Fe2+. Upon oxidation with N2O at 523 K, the two samples show a different behavior. While in Fe-silicalite practically all of the Fe2+ sites formed by thermal activation are reoxidized to Fe3+, in Fe-MCM-22 only a fraction of the extraframework iron sites is involved in the reoxidation process. The accessibility of the extraframework Fe sites was also investigated by using the NO molecule as a surface probe. Upon NO dosage on the sample, the modification of the pre-edge peak and of the edge position suggests an important charge release from the extraframework Fe2+ ions to the adsorbed molecules. This could be formalized with the formation of Fe3+(NO-) complexes, compatible (on the basis of the simple molecular orbital theory) with a bent NO geometry. The formation of a complex family of Fe2+ mono-, di-, and trinitrosyl complexes was also confirmed by FTIR spectroscopy. Similarly to what was observed in the oxidation experiments, the fraction of extraframework Fe sites able to interact with NO in Fe-MCM-22 sample is smaller than that in Fe-silicalite treated in the same conditions. This trend is explained with a major clustering of extraframework Fe sites in Fe-MCM-22 sample, as was also suggested by FTIR experiments. These results suggest that the dispersion of iron in zeolitic matrixes prepared by isomorphous substitution could also depend on the zeolitic structure.  相似文献   

19.
The iron carbonyl nitrosyls Fe 2(NO) 2(CO) n ( n = 7, 6, 5, 4, 3) have been studied by density functional theory (DFT) using the B3LYP and BP86 methods, for comparison of their predicted structures with those of isoelectronic cobalt carbonyl derivatives. The lowest energy structures for Fe 2(NO) 2(CO) 7 and Fe 2(NO) 2(CO) 6 have two NO bridges, and the lowest energy structure for Fe 2(NO) 2(CO) 5 has a single NO bridge with metal-metal distances (BP86) of 3.161, 2.598, and 2.426 A, respectively, corresponding to the formal metal-metal bond orders of zero, one, and two, respectively, required for the favored 18-electron configuration for the iron atoms. The heptacarbonyl Fe 2(NO) 2(CO) 7 is thermodynamically unstable with respect to CO loss to give Fe 2(NO) 2(CO) 6. The favored structures for the more highly unsaturated Fe 2(NO) 2(CO) 4 and Fe 2(NO) 2(CO) 3 also have bridging NO groups but avoid iron-iron bond orders higher than two by formal donation of five electrons from bridging NO groups with relatively short Fe-O distances. The lowest energy structures of the unsaturated Fe 2(NO) 2(CO) n derivatives ( n = 5, 4, 3) are significantly different from the isoelectronic cobalt carbonyls Co 2(CO) n +2 owing to the tendency for Fe 2(NO) 2(CO) n to form structures with bridging NO groups and metal-metal formal bond orders no higher than two.  相似文献   

20.
The compounds Cp*Fe(dppe)X ([Fe]X) and the corresponding cation radicals [Fe*]X*+ are available for the series X = F, Cl, Br, I, H, CH3. This has allowed for a detailed investigation of the dependence of the nature of Fe-X bonding on the identity of X and the oxidation state (charge) of the complex. Cyclic voltammetry demonstrates that the electrode potentials for the [Fe]X0/+ couples decrease in the order I > Br > Cl > H > F > CH3. An "inverse halide order" is seen, in which the most electronegative X leads to the most easily oxidized complex. This suggests that F is the best donor among the halides. The halide trend is also reflected in NMR spectroscopic data. M?ssbauer spectroscopy data also suggest that the F ligand is a strong donor (relative to H and CH3) in [Fe*]X*+. DFT calculations on CpFe(dpe)X ([Fe]X) model complexes nicely reproduce the trend in the electrode potentials for the [Fe*]X0/+ couples. Analysis of the theoretical data within the halogen series indicates that the energy of the [Fe]X HOMO does not correlate with the extent of its Fe(d(pi))-X(p(pi)) antibonding character, which varies in the order I > Br > Cl > F, but rather depends on the destabilizing electrostatic effect caused by X. This effect varies in the order F > Cl > Br > I. A thermochemical cycle that incorporates the [Fe*]X0/+ and [Fe*]0/+ electrode potentials was used to investigate the effect of the oxidation state of the complex on the homolytic bond dissociation energy (BDEhom), defined for the processes Fe-X --> Fe* + X* and Fe-X*+ --> Fe*+ + X*. For all X, it was found that a one-electron oxidation leads to a weakening of the Fe-X bond. This trend was reproduced by the DFT calculations. On the other hand, IR nu(Fe-X) spectroscopy data showed an increase in the stretching frequencies for X = H and Cl upon oxidation. X-ray crystallographic data showed a shortening of the Fe-Cl bond upon oxidation. The trends in IR and Fe-Cl bond distances were reproduced in the DFT calculations. The combined data therefore suggest that oxidation leads to weaker, but shorter, Fe-X bonds. A second thermochemical cycle was applied to investigate the effect of the one-electron oxidation on the heterolytic bond dissociation energies (BDEhet), defined for the processes Fe-X --> Fe+ + X- and Fe-X*+ --> Fe2+ + X-. In this case, the oxidation led to bond strengthening in all cases. The computed BDE values have been analyzed within Ziegler's transition state methodology and decomposed into two components, one electrostatic and one covalent, describing the interaction between the unrelaxed fragments. In all the computed BDEhom and BDEhet values of the [Fe]X models the electrostatic component is important. This helps to understand their respective variations upon oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号