首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

2.
A method for the unambiguous identification of highly polar molecules based on the separation on a silica gel column run in hydrophilic interaction chromatography (HILIC) mode followed by mass spectroscopic (MS) analysis and subsequent measurement by nuclear magnetic resonance (NMR) spectroscopy is described. Polar neutral, acidic and basic compounds of small molecular size usually not retained on reversed phase stationary phases can be separated and unequivocally identified by means of MS and NMR spectroscopy. The method is applied to exemplify the identification of the endogenous metabolite trigonelline and the polar antibiotic amoxicilline in human urine.  相似文献   

3.
This work aims at characterizing interactions between a select set of probes and 22 hydrophilic and polar commercial stationary phases, to develop an understanding of the relationship between the chemical properties of those phases and their interplay with the eluent and solutes in hydrophilic interaction chromatography. "Hydrophilic interaction" is a somewhat inexact term, and an attempt was therefore made to characterize the interactions involved in HILIC as hydrophilic, hydrophobic, electrostatic, hydrogen bonding, dipole-dipole, π-π interaction, and shape-selectivity. Each specific interaction was quantified from the separation factors of a pair of similar substances of which one had properties promoting the interaction mode being probed while the other did not. The effects of particle size and pore size of the phases on retention and selectivity were also studied. The phases investigated covered a wide range of surface functional groups including zwitterionic (sulfobetaine and phosphocholine), neutral (amide and hydroxyl), cationic (amine), and anionic (sulfonic acid and silanol). Principal component analysis of the data showed that partitioning was a dominating mechanism for uncharged solutes in HILIC. However, correlations between functional groups and interactions were also observed, which confirms that the HILIC retention mechanism is partly contributed by adsorption mechanisms involving electrostatic interaction and multipoint hydrogen bonding. Phases with smaller pore diameters yielded longer retention of solutes, but did not significantly change the column selectivities. The particle diameter had no significant effect, neither on retention, nor on the selectivities. An increased water content in the eluent reduced the multipoint hydrogen bonding interactions, while an increased electrolyte concentration lowered the selectivities of the tested columns and made their interaction patterns more similar.  相似文献   

4.
A novel cationic hydrophilic interaction monolithic stationary phase based on the copolymerization of 2-(methacryloyloxy)ethyltrimethylammonium methyl sulfate (META) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was designed for performing capillary liquid chromatography. While META functioned as both the ion-exchange sites and polar ligand provider, the PETA, a trivinyl monomer, was introduced as cross-linker. The monolithic stationary phases with different properties were easily prepared by adjusting the amount of META in the polymerization solution as well as the composition of the porogenic solvent. The hydrophilicity of the monolith increased with increasing content of META in the polymerization mixture. A typical hydrophilic interaction chromatography mechanism was observed when the content of acetonitrile in the mobile phase was higher than 20%. The poly(META-co-PETA) monolith showed very good selectivity for neutral, basic and acidic polar analytes. For polar-charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Peak tailing of basic compounds was avoided and the efficient separation of benzoic acid derivatives was obtained.  相似文献   

5.
Applications of hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs, i.e., glycosylated proteins represented by monoclonal antibodies are discussed in the manner of glycoproteomics. They can be analyzed using hydrophilic interaction chromatography in five different stages as (1) their intact forms, (2) their subunits, (3) N‐ and O‐glycopeptides digested by proteases, (4) N‐ and O‐glycans released from the glycoproteins or glycopeptides, and (5) monosaccharides. Hydrophilic interaction chromatography is a more useful tool in the order of (1) to (5). At the stages (4) and (5), quantitation of glycans and saccharides are also reported. Hydrophilic interaction chromatography is employed not only for analytical uses, but also pretreatment items as solid phase extraction, followed by reversed‐phase liquid chromatography separations. Comprehensive search results of these application of hydrophilic interaction chromatography are summarized in tables to show what kind of hydrophilic interaction chromatography columns are suitable for each step of analysis.Relationship of favored and less favored hydrophilic interaction chromatography columns and their separation characteristics such as hydrophilicity, and selectivity for structural difference, is also discussed. Analysis of the therapeutic peptides (not glycosylated) using hydrophilic interaction chromatography is summarized, too.  相似文献   

6.
The application of enhanced fluidity liquid (EFL) mobile phases to improving isocratic chromatographic separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC) mode is described. The EFL mobile phase was created by adding carbon dioxide to a methanol/buffer solution. Previous work has shown that EFL mobile phases typically increase the efficiency and the speed of the separation. Herein, an increase in resolution with the addition of carbon dioxide is also observed. This increase in resolution was achieved through increased selectivity and retention with minimal change in separation efficiency. The addition of CO2 to the mobile phase effectively decreases its polarity, thereby promoting retention in HILIC. Conventional organic solvents of similar nonpolar nature cannot be used to achieve similar results because they are not miscible with methanol and water. The separation of nucleosides with methanol/aqueous buffer/CO2 mobile phases was also compared to that using acetonitrile/buffer mobile phases. A marked decrease in the necessary separation time was noted for methanol/aqueous buffer/CO2 mobile phases compared to acetonitrile/buffer mobile phases. There was also an unusual reversal in the elution order of uridine and adenosine when CO2 was included in the mobile phase.  相似文献   

7.
Organic acids with very low pKa require extremely low pH conditions to achieve adequate retention in reversed‐phase liquid chromatography, but an extremely low pH mobile phase can cause instrument reliability problems and limit the choice of columns. Hydrophilic interaction chromatography is a potential alternative to reversed‐phase liquid chromatography for the separation of organic acids using more moderate conditions. However, the hydrophilic interaction chromatography separation mechanism is known to be very complex and involves multiple competing mechanisms. In the present study, a hydrophilic interaction chromatography column packed with bare silica core–shell particles was used as the separation column and six agricultural organic acids were used as model analytes to evaluate the effects of buffer concentration, buffer pH, and temperature on sample loading capacity, selectivity, retention, and repeatability. It was found that using a higher concentration of buffer can lead to a significant improvement in the overall performance and reproducibility of the separation. Investigation of column equilibration time revealed that a very long equilibration time is needed when changing mobile phase conditions in between runs. This limitation needs to be acknowledged in hydrophilic interaction chromatography method development and sufficient equilibration time needs to be allowed in method scouting.  相似文献   

8.
Four novel nonionic polar stationary phases were synthesised by anchoring first 2-mercaptoethanol and 1-thioglycerol, respectively, onto vinylised silica (ME and TG packings) followed by an on-phase oxidation with excess hydrogen peroxide in aqueous medium which yielded sulphoxide analogues of the embedded sulphide groups, i. e. oxidised 2-mercaptoethanol (MEO) and oxidised 1-thioglycerol (TGO) packings. Chromatographic characteristics of these stationary phases were evaluated comparatively to three commercial so-called 'diol' columns. U-shaped response curves of retention factors of adenosine and guanosine with hydro-organic eluents containing 5-95% v/v ACN as well as noticeable CH(2)-increment selectivity demonstrated multimodal separation capabilities of the developed amphiphilic materials, i. e. columns can be operated both in hydrophilic interaction chromatography (HILIC) and in RP mode. Although the selector ligands were physico-chemically related, considerably differing retention and selectivity patterns were observed in the HILIC mode. Thereby the introduction of additional hydroxyl groups in the chromatographic ligand resulted in selectivity increments that were different from those obtained by sulphur oxidation. For example, a set of five vitamins delivered five different elution orders with the overall seven columns. A close examination of HILIC separations of nucleobases and nucleosides on the developed packings revealed that (i) the amount of ACN in the eluent adopts a pivotal role in adjusting retention, (ii) the linearity of the relationship log (retention factor) versus log (volume fraction of water in the eluent) increases with phase polarity in the range of 5-40% v/v water, (iii) the slopes are higher with solutes having more polar interactive sites, (iv) the van't Hoff plots are linear (range 15-45 degrees C) with negative retention enthalpy values DeltaH (-4.5 to -14.5 kJ/mol) and (v) the -DeltaH values tend to be higher with more polar phases and more polar analytes. Based on these data the HILIC retention mechanism is described to be composed of both partitioning and adsorption processes. Distinct types of polar interactive sites in the chromatographic ligands may generate mixed-mode HILIC separation conditions that may additionally be superimposed by surface silanol contributions.  相似文献   

9.
Effects of mobile-phase variations on the chromatographic separation on amino-bonded silica column in hydrophilic interaction chromatography (HILIC) were investigated for four zwitterionic tetracyclines (TCs): oxytetracycline, doxycycline, chlortetracycline, and tetracycline. A mixed-mode retention mechanism composed of partitioning, adsorption, and ion exchange interactions was proposed for the amino HILIC retention process. Buffer type and pH significantly influenced the retention of TCs, but showed similar separation selectivity for the tested analytes. Experiments varying buffer salt concentration and pH demonstrated the presence of ion exchange interactions in TCs retention. The type and concentration of organic modifier also affected the retention and selectivity of the analytes, providing direct evidence supporting the Alpert retention model for HILIC. The retention time of the analytes increased in the following order of organic modifiers: tetrahydrofuran < methanol < isopropanol < acetonitrile. The linear relationships of logk' versus %water (v/v) curve and logk' versus logarithm of %water (v/v) in the mobile phase indicated that TCs separation on the amino phase was controlled by partitioning and adsorption. The developed method was successfully utilized in the detection of TCs in both river water and wastewater samples using solid-phase extraction (SPE) for sample cleanup.  相似文献   

10.
Liang X 《色谱》2011,29(3):191-192
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,可以作为反相液相色谱的重要补充,解决极性化合物的分离问题。近几年,HILIC研究发展十分迅速,应用领域也不断拓展,其中寡糖分离是HILIC最典型的应用领域。HILIC适合分离强极性和亲水性样品,是寡糖分离的理想色谱模式。基于HILIC的寡糖分离技术发展迅速,本文以近期发表在主要国际刊物的几个工作为典型案例,介绍HILIC用于寡糖色谱分离的若干进展。  相似文献   

11.
Eight deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs): ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and dTTP, were separated with two 15 cm ZIC-pHILIC columns coupled in series, using LC-UV instrumentation. The polymer-based ZIC-pHILIC column gave significantly better separations and peak shape than a silica-based ZIC-HILIC column. Better separations were obtained with isocratic elution as compared to gradient elution. The temperature markedly affected the selectivity and could be used to fine tune separation. The analysis time was also affected by temperature, as lower temperatures surprisingly reduced the retention of the nucleotides. dNTP/NTP standards could be separated in 35 min with a flow rate of 200 μL/min. In Escherichia coli cell culture samples dNTP/NTPs could be selectively separated in 7 0min using a flow rate of 100 μL/min.  相似文献   

12.
A hydrophilic interaction liquid chromatography (HILIC) method was developed for the analysis of very polar and basic 4-(aminomethyl)pyridine (4-AMP) and its related compounds. Separation parameters such as stationary phase, buffer pH, buffer ionic strength, organic modifier, and column temperature were evaluated. The retention mechanisms were explored through the evaluation of the common chromatographic parameters in the method development. The data indicated the existence of surface adsorption phenomena for 4-AMP and its positional isomers (2-AMP, 3-AMP). For two degradants, different retention mechanisms might be involved when compared to 4-AMP. The selectivity of two critical pairs 3-/4-AMP isomer and Degradant-1/-2 diastereomer changed through isoelution temperature with reversal of elution order. The validation results indicated that the HILIC method is a sensitive, reproducible, and robust method suitable for the analysis of 4-AMP and its related compounds.  相似文献   

13.
The separation of a mixture of neutral, strongly acidic and strongly basic compounds was studied in hydrophilic interaction chromatography using a bare silica phase, and bonded silica phases with diol, zwitterionic, amide and hydrophilic/hydrophobic groups. The mobile phase was acetonitrile–ammonium formate buffer at low pH. Differences in selectivity between these various columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes partition from the bulk mobile phase. Attempts to fit the retention data to equations which describe either partition or adsorption mechanisms were inconclusive. Ion exchange was a significant contributor to the retention of ionised bases on all columns studied. Van Deemter plots indicated that the efficiency as a function of flow rate varied between the columns, which might be attributable in part to the presence of either monomeric or polymeric bonded phase layers.  相似文献   

14.
15.
Hydrophilic interaction liquid chromatography (HILIC) is an alternative technique to ion pairing-reversed-phase liquid chromatography (IP-RPLC) and classical RPLC for separation of alkylimidazolium room-temperature ionic liquids (RTILs). Particularly, HILIC offers better retention and selectivity for short-chains RTILs imidazolium compounds. HILIC mechanisms were investigated by studying the influence of organic modifier content and salt concentration in the mobile phase. HILIC method was validated by quantifying 1-butyl-3-methylimidazolium cation (BMIM) degradation under gamma radiation at 2.5MGy. Development of separative reproducible analytical methods, including for low concentration, applicable to RTILs are today mandatory to improve RTILs chemistry.  相似文献   

16.
Adopting a stationary phase convention circumvents problematic definition of the boundary between the stationary and the mobile phase in the liquid chromatography, resulting in thermodynamically consistent and reproducible chromatographic data. Three stationary phase definition conventions provide different retention data, but equal selectivity: (i) the complete solid phase moiety; (ii) the solid porous part carrying the active interaction centers; (iii) the volume of the inner column pores. The selective uptake of water from the bulk aqueous‐organic mobile phase significantly affects the volume and the properties of polar stationary phases. Some polar stationary phases provide dual‐mode retention mechanism in aqueous‐organic mobile phases, reversed‐phase in the water‐rich range, and normal‐phase at high concentrations of the organic solvent in water. The linear solvation energy relationship model characterizes the structural contributions of the non‐selective and selective polar interactions both in the water‐rich and organic solvent‐rich mobile phases. The inner‐pore convention provides a single hold‐up volume value for the retention prediction on the dual‐mode columns over the full mobile phase range. Using the dual‐mode monolithic polymethacrylate zwitterionic micro‐columns alternatively in each mode in the first dimension of two‐dimensional liquid chromatography, in combination with a short reversed‐phase column in the second dimension, provides enhanced sample information.  相似文献   

17.
Creatine, phosphocreatine, and adenine nucleotides are highly polar markers of myocardial metabolism that are poorly retained on RP silica sorbents. Zirconia represents an alternative material to silica with high promise to be used in hydrophilic interaction chromatography (HILIC). This study describes a first systematic investigation of the ability of ZrO2 to separate creatine, phosphocreatine, adenosine 5′‐monophosphate, adenosine 5′‐diphosphate, and adenosine 5′‐triphosphate and compares the results with those obtained on TiO2. All analytes showed a HILIC‐like retention pattern when mobile phases of different strengths were tested. Stronger retention and better column performance were achieved in organic‐rich mobile phases as compared to aqueous conditions, where poor retention and insufficient column performance were observed. The effect of mobile phase pH and ionic strength was evaluated as well. The analysis of myocardial tissue demonstrated that all compounds were separated in a relevant biological material and thus proved ZrO2 as a promising phase for HILIC of biological samples that deserves further investigation.  相似文献   

18.
Commercial glucooligosaccharide mixtures (Polycose) and polysaccharide hydrolysates (acid and enzymatic) were fractionated by hydrophilic interaction chromatography and observed by pulsed amperometric detection. Seven peaks were observed when 625 ng of glucose oligomers in Polycose were fractionated. The between-run precision of retention times (n = 10, 100 μg, 15 peaks) ranged from a relative standard deviation (R.S.D.) of 0.09 to 0.40%; between-run precision of peak areas (n = 10) for the same separations had values that ranged from 2.66 to 14.4%. Injection-to-injection time was 48 min. When polysaccharide hydrolysates were fractionated using a gradient program capable of resolving all of the oligosaccharide species, dextran-derived -(1→6)- glucooligosaccharides were retained to a greater degree than amylose-derived -(1→4)-glucooligosaccharides, which were retained to a greater degree than β-(2→1)-fructooligosaccharides derived from inulin. Excluding the peaks that eluted before glucose or fructose, 25 to 35 peaks were observed after fractionation of the hydrolysates. Differences in elution profiles were observed between acid and enzymatic hydrolysis products of the same polysaccharide as well as between hydrolysis products of different polysaccharides. In conjunction with high-performance size-exclusion chromatography, the method demonstrated the effect of preheating starch before hydrolysis with isoamylase.  相似文献   

19.
This article surveys recent developments in the separation and analysis of carbohydrates by high-performance liquid chromatography, in adsorption or partition modes, on polar sorbents with less polar eluents, a technique that is now termed hydrophilic interaction chromatography. A variety of chromatographic methods are included under this generic heading, the most important being adsorption chromatography on silica and partition chromatography on silica-based sorbents bearing bonded polar phases. Examples are given of the applications of these stationary phases, as well as the newer polymer-based polar sorbents, in high-performance liquid chromatography of carbohydrates and their derivatives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号