共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Chiuan-Ting Li Keh-Chin Chang Muh-Rong Wang 《Experimental Thermal and Fluid Science》2009,33(3):527-537
A turbulent mixing layer consists of two different flow types, i.e. shear layer (shear-flow turbulence) and free stream regions (nearly homogeneous turbulence). The inherent non-uniform seeding tracer distributions observed around the interfaces between the shear layer and two free stream regions usually lead to a difficulty in particle image velocimetry (PIV) measurements. A parametric study on the application of PIV to the measurement of velocity field in a planar mixing layer is made by means of six factors, including interrogation window size, aspect ratio of interrogation window, interrogation window offset, threshold of data validation, sharpening spatial filters (Prewitt and Sobel masks), and smoothing spatial filter (median mask). The objective of this study is to obtain accurate turbulent measurements in both mean and fluctuating velocities using PIV under an appropriate parametric setting. The optimal levels, which are trade-off in between the accuracy and fine spatial resolution of velocity field measurements, are determined with the aid of the Taguchi method. It is shown that the PIV measurements made with this optimal set of parameters are in good agreement with the measurements made by a two-component hot-wire anemometer. Case independency of the proposed optimal set of parameters on the flow condition of the mixing layer is validated through the applications to two additional tests under the different experimental conditions in changing solely either velocity ratio of high-speed to low-speed free stream velocities or Reynolds number. 相似文献
5.
A. N. Razin N. V. Nevmerzhitskii E. A. Sotskov E. D. Sen’kovskii O. L. Krivonos E. V. Levkina S. V. Frolov E. V. Bodrov K. V. Anisiforov 《Journal of Applied Mechanics and Technical Physics》2017,58(2):200-208
The interaction of a shock wave with turbulent flow was experimentally investigated. The case where a shock wave formed at one end of the tube, passed through the interface between two quiescent gases with different densities (air–CO2 or air–Ar), was reflected from the end of the tube, and interacted with the zone of turbulent mixing formed at the interface. The Mach number of the shock wave incident on the interface in air was M ≈ 2.37–2.57. The flow field was recorded using the schlieren method and high-speed video recording. It was found that after passing the mixing zone, the shock-wave front was deformed and became unstable. 相似文献
6.
V. E. Neuvazhaev V. G. Yakovlev 《Journal of Applied Mechanics and Technical Physics》1976,17(4):513-519
The theory of turbulent mixing at the interface of two media in accelerated motion was constructed in [1], and an approximate solution was given for incompressible fluids. The time variation of kinetic energy was neglected in the equation of balance for the kinetic energy of the turbulent motion. In [2] the characteristic turbulent velocity is averaged over the mixing region. This allows the initial equations to be solved allowing for the time variation of kinetic energy. It turns out that the resulting density profile roughly coincides with the profile of [1] within a wide range of variation of the initial density differential. In the present paper the equations for the mixing of incompressible fluids are studied in their complete form. It is established that the solutions of [1, 2] are applicable within a limited region, valid for small density ratios. The resulting solution is analyzed qualitatively, and it is shown that the density gradient at the mixing front is discontinuous. The dependence of the solution on two empirical constants is investigated. An approximate choice of the values of these constants is made on the basis of the theoretical considerations of [2, 3], and by comparison with the solution of [1]. The mixing asymmetry is found numerically as a function of the initial density differential. Quantitative characteristics of the solution are illustrated in graphs.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 74–81, July–August, 1976. 相似文献
7.
Bo-Feng Bai Hai-Bin Zhang Li Liu Hui-Juan Sun 《Experimental Thermal and Fluid Science》2009,33(6):1012-1020
Centrifugal spray injected at various angles in gas crossflow has been studied experimentally using PIV visualization system and image-processing techniques. Experiments were carried out inside a rectangular duct (95 mm × 95 mm in cross-section) at ambient temperature and pressure, with different gas Reynolds numbers (vary from 12,900 to 45,000) and three injection angles (60°, 90° and 120°). The spray angle of the centrifugal nozzle is 80°, with D32 of 80 μm. The instantaneous images of droplets distribution and the values of the line-averaged D32 at different positions on the cross-sections along the flow field for each condition were obtained, and their flow field configurations were achieved. Quantitative assessments of mixing degree between two phases for different injection angles were determined using a spatial unmixedness parameter. It is found that the addition of droplets into the gas crossflow enhanced the turbulence intensity of the gas crossflow and caused different-scale vortices. The flow field structure, to a great extent, is dependent on the injection angle. The entrainment and centrifugal force of large vortex lead to uneven droplet distribution and moreover influence the mixing of droplets and gas crossflow. A better mixing result can be obtained with the injection angle of nozzles of 60°. 相似文献
8.
An experimental investigation of a shock wave interacting with one, or several, liquid layer(s) is reported with a motivation towards first wall protection in inertial fusion energy reactor chamber design. A 12.8 mm or 6.4 mm thick water layer is suspended horizontally in a large vertical shock tube in atmospheric pressure argon and subjected to a planar shock wave of strength ranging from M = 1.34 to 3.20. For the single water layer experiments, the shock-accelerated liquid results in a significant increase in end-wall pressure loading (and impulse) compared with tests without water. The end-wall loading can be reduced by more than 50% for a given volume of water when it is divided into more than one layer with interspersed layer(s) of argon. A flash X-ray technique is employed to measure the volume fraction of the shocked water layer and multiple water layers are found to dissipate more energy through the liquid fragmentation process resulting in increased shock mitigation. 相似文献
9.
Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the time at which L becomes resolved on the computational mesh. It is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing. 相似文献
10.
The mixing of two feed streams in a reactor, one with a fluorescent tracer, the other without, results in a fluctuating concentration field, due to the turbulent flow. Fluorescence spectroscopy allows the characterization of the fluctuations at small scale and high frequencies. Measurements have been made with a spatial resolution of about 30 μm and up to a frequency of 5,000 Hz. Methods have been developed to determine the variance (intensity of segregation) and the power spectra. The spectra can be used to calculate the integral scale of the fluctuations, and in some cases the microscale and dissipation rate. Two optical setups are presented, one based on a nonfocused and the other on a focused laser beam. It is shown that only the focused system has sufficiently high laser flux density and sufficiently small measurement volume to give useful results at the desired characteristic size and frequency. As a demonstration of the method, the turbulent mixing in a continuous stirred tank reactor has been studied. Experiments were carried out in a 225 cm3 baffled reactor, stirred by a six-bladed Rushton disk turbine. The effects of stirring speed and position on the mixing were investigated. 相似文献
11.
Eric Goncalvès 《European Journal of Mechanics - B/Fluids》2011,30(1):26-40
The simulation of cavitating flows is a challenging problem both in terms of modelling the physics and developing robust numerical methodologies. Such flows are characterized by important variations of the local Mach number, compressibility effects on turbulence and involve thermodynamic phase transition. To simulate these flows by applying homogeneous models and Reynolds averaged codes, the turbulence modelling plays a major role in the capture of unsteady behaviours. This paper presents a one-fluid compressible Reynolds-Averaged Navier–Stokes (RANS) solver with a simple equation of state (EOS) for the mixture. A special focus is devoted to the turbulence model influence. Unsteady numerical results are given for Venturi geometries and comparisons are made with experimental data. 相似文献
12.
We introduce an approach for controlling jet mixing that combines direct numerical simulation of an incompressible jet flow with stochastic optimization procedures. The jet is excited with helical and combined helical and axial actuations at the orifice. An objective function that measures the spreading of the jet evaluates the performance of the actuation parameters. The optimization procedure searches for the best actuation by automatically varying the parameters and calculating their objective function value. Solutions that lead to a pronounced spreading of the jet are found within reasonable time, although the evaluation of the objective function, the DNS of the jet, is expensive. For a jet flow at low Reynolds number the performance of different search algorithms (simulated annealing and evolution strategies) is evaluated. We compare various objective functions based on radial velocity and the concentration of a passive scalar, including functions that penalize actuation with high amplitudes. We find that a combined axial and helical actuation is much more efficient with respect to jet mixing than a helical actuation alone. 相似文献
13.
This paper describes the tests of accuracy and the first application of a combined planar visualization technique. Its goal is two-phase flow discrimination, i.e. simultaneous measurements of velocity of droplets and ambient gas in the case of two-phase flow mixing, at the same location and with possible conditioning by “apparent diameter” (AD) of the droplets. It combines the mature techniques of particle image velocimetry (PIV), planar Mie scattering diffusion (PMSD), planar laser-induced fluorescence (PLIF), and it necessitates two synchronized cross-correlation systems, digital image treatment and analysis. This technique was developed with the objective of better describing the mixing between liquid and gaseous phases as in the case of high-pressure spray atomization in quiescent ambient gas. The basic principle of separation is to seed the ambient gas with micrometer particles and to tag the liquid with fluorescent dye. We use digital image treatment and analysis to discriminate between the phases. We use two cross-correlation PIV systems in order to obtain the velocity field of the droplets and gas simultaneously and separately at the same location. The digital image processing for separating the phases involves geometric measurement of droplet shapes. This leads to measurement of droplet parameters close to their real diameter, which could be used for analysis of actual mixing. A synchronized system composed of two CCD cameras is used for image recording, and two Nd:YAG lasers are used for generating pulsed light sheets at times t and t + δt. Tests were performed to check for different sources of errors. The combined technique was applied to measurements in high-pressure spray flow atomizing in a quiescent ambient gas, and first results are presented. 相似文献
14.
NUMERICALSTUDYOFSHOCKDIFFRACTIONINDUSTYGASESWuQing-son(吴清松)ZhuHong(朱红)XuYan-hou(徐燕侯)(UniversityofScienceandTechnologyofChina,... 相似文献
15.
The non-intrusive initialization of a flow field with distinct and spatially segregated scalar components represents a significant experimental difficulty. Here a new technique is described which makes possible the non-intrusive initialization of a spatially binary passive scalar field in a laminar or turbulent flow field. This technique uses photoactivatable (caged) fluorescent dyes dissolved in the flow medium. The scalar field within the flow field is tagged or initialized by uncaging the appropriate regions with an ultraviolet excimer laser. Mixing between the tagged and untagged regions is quantified using standard laser induced fluorescence techniques. The method is currently being used to study mixing in a turbulent pipe flow. 相似文献
16.
The fully developed turbulent flows over wavy boundaries are investigated by means of thek-ε model. Predicted flow characteristics over rigid wavy walls are in good agreement with the vailable experimental data.
Moreover drag reduction has been found in a 2-dimensional channel with periodical wavy walls. The energy input from turbulent
wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at
wind-wave interface. Better agreement has been obtained in the predication of the growth rates of wind waves as compared with
the previous theoretical and numerical results.
The project supported by the National Natural Science Foundation of China. 相似文献
17.
An experimental study on turbulent coherent structures near a sheared air-water interface 总被引:3,自引:0,他引:3
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization
technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show
that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks
form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached,
“turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear
rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed
near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few
distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical
vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.
The project supported by the National Natural Science Foundation of China (Grant No.19672070) 相似文献
18.
In this paper, new planar isoparametric triangular finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are developed. The proposed ANCF elements have six coordinates per node: two position coordinates that define the absolute position vector of the node and four gradient coordinates that define vectors tangent to coordinate lines (parameters) at the same node. To shed light on the importance of the element geometry and to facilitate the development of some of the new elements presented in this paper, two different parametric definitions of the gradient vectors are used. The first parametrization, called area parameterization, is based on coordinate lines along the sides of the element in the reference configuration, while the second parameterization, called Cartesian parameterization, employs coordinate lines defined along the axes of the structure (body) coordinate system. The fundamental differences between the ANCF parameterizations used in this investigation and the parametrizations used for conventional finite elements are highlighted. The Cartesian parameterization serves as a unique standard for the triangular FE assembly. To this end, a transformation matrix that defines the relationship between the area and the Cartesian parameterizations is introduced for each element in order to allow for the use of standard FE assembly procedure and define the structure (body) inertia and elastic forces. Using Bezier geometry and a linear mapping, cubic displacement fields of the new ANCF triangular elements are systematically developed. Specifically, two new ANCF triangular finite elements are developed in this investigation, namely four-node mixed-coordinate and three-node ANCF triangles. The performance of the proposed new ANCF elements is evaluated by comparison with the conventional linear and quadratic triangular elements as well as previously developed ANCF rectangular and triangular elements. The results obtained in this investigation show that in the case of small and large deformations as well as finite rotations, all the elements considered can produce correct results, which are in a good agreement if appropriate mesh sizes are used. 相似文献
19.
I. Zuber 《International Journal of Heat and Fluid Flow》1982,3(2):91-99
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow. 相似文献