首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
传统的Roe格式不满足熵条件并且在计算激波问题时会遭遇不同形式的不稳定现象,如慢行激波的波后振荡和红玉(carbuncle)现象.基于Zha-Bilgen对流-压力通量分裂方法,构造一种新型的通量差分裂格式.利用约旦标准型理论,通过添加广义特征向量构造通量差分裂方法来计算对流子系统.压力子系统具有一组完备的线性无关特征向量,因此可以构造传统的通量差分裂格式进行计算.为了提高接触间断的分辨率,利用界面变差下降(BVD)算法来重构对流通量耗散项中的密度差.激波稳定性分析表明,新格式可以有效地衰减数值误差,从而抑制不稳定现象的发生.一系列数值实验证明了本文构造的新型通量差分裂格式比Roe格式具有更高的分辨率和更好的鲁棒性.  相似文献   

2.
A hybrid conservative finite difference/finite element scheme is proposed for the solution of the unsteady incompressible Navier–Stokes equations. Using velocity–pressure variables on a non-staggeredgrid system, the solution is obtained with a projection method basedon the resolution of a pressure Poisson equation. The new proposed scheme is derived from the finite element spatial discretization using the Galerkin method with piecewise bilinear polynomial basis functions defined on quadrilateral elements. It is applied to the pressure gradient term and to the non-linear convection term as in the so-called group finite element method. It ensures strong coupling between spatial directions, inhibiting the development of oscillations during long-term computations, as demonstrated by the validation studies. Two- and three-dimensional unsteady separated flows with open boundaries have been simulated with the proposed method using Cartesian uniform mesh grids. Several examples of calculations on the backward-facing step configuration are reported and the results obtained are compared with those given by other methods. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 833–861, 1997.  相似文献   

3.
Recently the concept of adaptive grid computation has received much attention in the computational fluid dynamics research community. This paper continues the previous efforts of multiple one-dimensional procedures in developing and asessing the ideas of adaptive grid computation. The focus points here are the issue of numerical stability induced by the grid distribution and the accuracy comparison with previously reported work. Two two-dimensional problems with complicated characteristics—namely, flow in a channel with a sudden expansion and natural convection in an enclosed square cavity—are used to demonstrate some salient features of the adaptive grid method. For the channel flow, by appropriate distribution of the grid points the numerical algorithm can more effectively dampen out the instabilities, especially those related to artificial boundary treatments, and hence can converge to a steady-state solution more rapidly. For a more accurate finite difference operator, which contains less undesirable numerical diffusion, the present adaptive grid method can yield a steady-state and convergent solution, while uniform grids produce non-convergent and numerically oscillating solutions. Furthermore, the grid distribution resulting from the adaptive procedure is very responsive to the different characteristics of laminar and turbulent flows. For the problem of natural convection, a combination of a multiple one-dimensional adaptive procedure and a variational formulation is found very useful. Comparisons of the solutions on uniform and adaptive grids with the reported benchmark calculations demonstrate the important role that the adaptive grid computation can play in resolving complicated flow characteristics.  相似文献   

4.
5.
A new numerical method named as basic function method is proposed. It can directly discretize differential operators on unstructured grids. By expanding the basic function to approach the exact function, the central and upwind schemes of derivative are constructed. By using the second-order polynomial as a basic function and applying the flux splitting method and the combination of central and upwind schemes to suppress non-physical fluctuation near shock waves, a second-order basic function scheme of polynomial type is proposed to solve inviscid compressible flows numerically. Numerical results of typical examples for two-dimensional inviscid compressible transonic and supersonic steady flows indicate that the new scheme has high accuracy and high resolution for shock waves. Combined with the adaptive remeshing technique, satisfactory results can be obtained.  相似文献   

6.
根据泥质夹层的低渗特性及空间分布,本文提出了一种含泥质夹层油藏网格渗透率的粗化计算方法,并在此基础上,将自适应网格算法应用于含泥质夹层油藏的数值模拟,提升其计算效率.在计算过程中,网格的动态划分仅依据流体物理量的变化,泥质夹层区域不全部采用细网格,仅针对流动锋面处的泥质夹层采用细网格,其余泥质夹层处采用不同程度的粗网格.相较于传统算法,网格数大幅下降.数值算例表明,自适应网格算法的计算结果精度与全精细网格一致,能够准确模拟出泥质夹层对于流体的阻碍作用,同时计算效率得到大幅提升,约为全精细网格算法的3~7 倍.  相似文献   

7.
动态混合网格生成及隐式非定常计算方法   总被引:1,自引:1,他引:1  
建立了一种基于动态混合网格的非定常数值计算方法. 混合网格由贴体的四边形网格、外场 的多层次矩形网格和中间的三角形网格构成. 当物体运动时,贴体四边形网格随物体运动而 运动,而外场的矩形网格保持静止,中间的三角形网格随之变形;当物体运动位移较大,导 致三角形网格的质量降低,甚至导致网格相交时,在局部重新生成网格. 新网格上的物理量 由旧网格上的物理量插值而得. 为了提高计算效率,采用了双时间步和子迭代相结合的隐式 有限体积格式计算非定常Navier-Stokes方程. 子迭代采用高效的块LU-SGS方法. 利用该 方法数值模拟了NACA0012振荡翼型的无黏和黏性绕流,得到了与实验和他人计算相当一致 的结果.  相似文献   

8.
A nested multi‐grid solution algorithm has been developed for an adaptive Cartesian/Quad grid viscous flow solver. Body‐fitted adaptive Quad (quadrilateral) grids are generated around solid bodies through ‘surface extrusion’. The Quad grids are then overlapped with an adaptive Cartesian grid. Quadtree data structures are employed to record both the Quad and Cartesian grids. The Cartesian grid is generated through recursive sub‐division of a single root, whereas the Quad grids start from multiple roots—a forest of Quadtrees, representing the coarsest possible Quad grids. Cell‐cutting is performed at the Cartesian/Quad grid interface to merge the Cartesian and Quad grids into a single unstructured grid with arbitrary cell topologies (i.e., arbitrary polygons). Because of the hierarchical nature of the data structure, many levels of coarse grids have already been built in. The coarsening of the unstructured grid is based on the Quadtree data structure through reverse tree traversal. Issues arising from grid coarsening are discussed and solutions are developed. The flow solver is based on a cell‐centered finite volume discretization, Roe's flux splitting, a least‐squares linear reconstruction, and a differentiable limiter developed by Venkatakrishnan in a modified form. A local time stepping scheme is used to handle very small cut cells produced in cell‐cutting. Several cycling strategies, such as the saw‐tooth, W‐ and V‐cycles, have been studies. The V‐cycle has been found to be the most efficient. In general, the multi‐grid solution algorithm has been shown to greatly speed up convergence to steady state—by one to two orders. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A three-dimensional model has been developed to compute the thermofluid transport within a discharge arctube. The model has proved very useful for guiding the choice of design parameters to optimize the lamp performance. However, uncertainties exist with respect to quantitative aspects of the physical model, especially those related to radiation heat transfer. In the present work a grid refinement procedure and an adaptive grid method are used to improve the quantitative accuracy of the model and to help improve the physical modelling. The adaptive grid method, based on the multiple one-dimensional equidistribution concept, can responsively redistribute the grids to optimize the grid resolutions. Adaptive grid solutions modify the predicted maximum gas temperature, the buoyancy-induced convection strength, the location of the high-temperature core, and the wall temperature profiles. The adaptive grid solutions show more consistent trends when compared to the measurements. On the basis of the quantitatively more definite information, adjustments can be made with regard to the uncertainties of the physical model.  相似文献   

10.
A nodally exact convection–diffusion–reaction scheme developed in Cartesian grids is applied to solve the flow equations in irregular domains within the framework of immersed boundary (IB) method. The artificial momentum forcing term applied at certain points in the flow and inside the body of any shape allows the imposition of no‐slip velocity condition to account for the body of complex boundary. Development of an interpolation scheme that can accurately lead to no‐slip velocity condition along the IB is essential since Cartesian grid lines generally do not coincide with the IB. The results simulated from the proposed IB method agree well with other numerical and experimental results for several chosen benchmark problems. The accuracy and fidelity of the IB flow solver to predict flows with irregular IBs are therefore demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A Chebyshev finite spectral method on non-uniform meshes is proposed. An equidistribution scheme for two types of extended moving grids is used to generate grids. One type is designed to provide better resolution for the wave surface, and the other type is for highly variable gradients. The method has high-order accuracy because of the use of the Chebyshev polynomial as the basis function. The polynomial is used to interpolate the values between the two non-uniform meshes from a previous time step to the current time step. To attain high accuracy in the time discretization, the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme is used. To avoid numerical oscillations caused by the dispersion term in the Korteweg-de Vries (KdV) equation, a numerical technique on non-uniform meshes is introduced. The proposed numerical scheme is validated by the applications to the Burgers equation (nonlinear convectiondiffusion problems) and the KdV equation (single solitary and 2-solitary wave problems), where analytical solutions are available for comparisons. Numerical results agree very well with the corresponding analytical solutions in all cases.  相似文献   

12.
边界处正交的曲线网格生成技术合理调节因子选取的研究   总被引:4,自引:1,他引:4  
指出了 Thompson的曲线网格生成方法中调节因子的问题所在 ;借助于势流理论中的流线与势线正交的物理机理 ,导出了一种新的调节因子的表达式 ,并给出了曲线网格生成实例。实例检验表明 ,该调节因子能够对复杂边界的单连通域或多连通域的水域生成理想的曲线网格 ,即边界处网格正交 ,内部网格分布能够适应物理量场的变化情形。  相似文献   

13.
We propose a pressure‐based unified solver for gas‐liquid two‐phase flows where compressible and incompressible flows coexist. Unlike the original thermo–Cubic Interpolated Propagation Combined Unified Procedure (CIP‐CUP) method proposed by Himeno et al (Transactions of the Japan Society of Mechanical Engineers, Series B, 2003), we split the advection term of the governing equations into a conservation part and into the rest. The splitting of advection term has two advantages. One is the high degree of freedom in choosing discretization schemes such as central‐difference schemes, upwind schemes, and Total Variation Diminishing (TVD) schemes. The other is the ease of implementation on unstructured grids. The advantages enable the analyses of various flows such as turbulent and supersonic ones in actual complicated boundaries. Therefore, the solver is useful for practical analyses. The solver was validated on the following test cases: subsonic single‐phase flows, incompressible single‐phase turbulent flows, and incompressible gas‐liquid two‐phase flows. With unstructured grids, we obtained the equivalent results as the ones with structured grids. After the validations, subsonic jet impinging on a water pool was calculated and compared with experimental results. It was confirmed that the calculated results were consistent with the experimental ones.  相似文献   

14.
In this work, an approach is proposed for solving the 3D shallow water equations with embedded boundaries that are not aligned with the underlying horizontal Cartesian grid. A hybrid cut‐cell/ghost‐cell method is used together with a direction‐splitting implicit solver: Ghost cells are used for the momentum equations in order to prescribe the correct boundary condition at the immersed boundary, while cut cells are used in the continuity equation in order to conserve mass. The resulting scheme is robust, does not suffer any time step limitation for small cut cells, and conserves fluid mass up to machine precision. Moreover, the solver displays a second‐order spatial accuracy, both globally and locally. Comparisons with analytical solutions and reference numerical solutions on curvilinear grids confirm the quality of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
把正交正放类网架结构简化为构造上正交异性的夹层板,采用考虑剪切变形的具有三个广义位移的平板弯曲理论进行分析。基于分解刚度思想对三类屋面网架(正放四角锥网架、两向正交正放网架和正放抽空四角锥网架)进行了静力分析和固有振动分析,对三类竖向承重网架墙体进行了稳定性分析,给出了简便实用的计算公式。通过与有限元法分析结果的对比,表明了本文提出的方法作为一种简化的计算方法,其精度是比较高的,绝大多数的误差都小于5%,可以应用于工程结构的初步设计。此外,与其他的简化计算方法相比它的精度比较高而且计算过程大大简化了。  相似文献   

16.
高银军  闫凯  田宙  刘峰 《爆炸与冲击》2015,35(3):289-295
基于强爆炸火球光辐射的多群辐射流体力学方法, 采用算子分裂方法将方程组分裂为对流项和刚性源项, 其中源项部分根据方程形式, 进一步分裂为各群内的单独求解。数值计算表明:该方法克服了直接求解过程中辐射与流体耦合所带来的强不稳定性, 时间步长大幅提高, 给出的火球光辐射能谱特征与已有规律一致。可为定量分析光辐射能谱特征提供有效手段。  相似文献   

17.
为满足亚声速和跨声速飞机概念设计中快速气动计算的需求,研究和发展一种基于自适应直角网格的非线性全速势方程有限体积解法。要点如下。(1)在几何自适应直角网格的基础上,使用结合单元融合的网格切割算法处理物面边界,提出一种修正非贴体切割网格的方法。(2)采用隐式格式结合GM RES算法求解该非线性位流方程,针对流场的自适应来捕捉激波。(3)采用镜像法处理物面边界处的无穿透条件,并提出解析的方法来修正镜像单元的值。(4)针对直角网格的特点,提出在库塔线上插入库塔单元的方法施加库塔条件。NACA0012翼型绕流的算例结果表明,该方法用于亚声速和跨声速气动计算能得到令人满意的结果,且自动化程度高、收敛速度快。  相似文献   

18.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A multimesh adaptive scheme for convection–diffusion–reaction problems for a large number of components is presented. The problem is solved by splitting transport and reaction processes. This way, the evaluation of the nonreactive part for each component and the reaction at each node constitute independent tasks. This allows to discretize each component of the solution on a distinct computational mesh, adapted on the basis of its error indicator. The standard single‐mesh strategy is used for comparison. Simulations of a point emission in a 3D domain are presented. Low remeshing periods of the adaptive scheme are found to be optimal, in terms of computational cost and accuracy, for the nonreactive problem. Examples with several reaction terms, with an increase of the complexity, are then presented. Results show that the accuracy of single‐mesh and multimesh strategies are similar. Instead, the computational cost of the multimesh strategy is lower than the single‐mesh in the majority of the examples; this process is controlled by the stiff behavior of the reactive term. The problem size of the multimesh scheme is much lower, and therefore, larger spatial discretizations can be simulated for a given available memory. The efficiency of the multimesh strategy increases with the number of species and the number of species that develop a plume. Finally, an example of a punctual emission considering realistic values of the initial concentrations and using the Community Multiscale Air Quality‐CBO5 reaction model, which involves 62 components, is presented; the small‐scale structure of the different nitrogen components near the emitter is captured. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
无网格Taylor最小二乘(MFLS)稳定化方案可有效地消除无网格Galerkin方法求解对流占优问题时产生的数值伪振荡,但当对流作用很强或纯对流时,它的求解效果不尽人意.因此,本文基于MFLS稳定化方案给出了一种自适应节点加密技术.该技术将无网格方法中背景积分单元作为自适应节点加密时物理量梯度指标的控制单元,并计算该控制单元上的物理量梯度指标;然后将其与给定的物理量梯度指标限进行比较,标识出大梯度区域从而进行自适应节点加密.数值实验表明,当求解对流作用很强的问题或纯对流问题时,这种基于MFLS稳定化方案的自适应节点加密技术不仅能有效地标示出数值振荡区域,而且可以彻底地消除数值伪振荡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号