首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Acylation of N,O-bistrimethylsilyl-3-aminobenzoic acid with 3-acetoxybenzoylchloride yielded the trimethylsilylester of N-(3′-acetoxybenzoyl)-3-aminobenzoic acid, which was polycondensed in situ at 260 or 280°C. Cocondensation with acetylated tetraphenols yielded four-arm star copolymers with a random or preferentially alternating sequence of 3-hydroxy and 3-aminobenzoyl units. Due to ester-amide exchange detected by 1H- and 13C-NMR spectroscopy, the sequences were never perfectly alternating. Methyl groups attached to the star centers allowed the determination of degrees of polymerization by 1H-NMR spectroscopy. Acylation of N,O-bistrimethylsilyl-3-amino benzoic acid with 3,5-bisacetoxybenzoylchloride yielded a trifunctional monomer, the polycondensation of which yielded a hyperbranched poly(ester-amide). By cocondensation of the trifunctional monomer with acetylated tetraphenyl, star-shaped poly(ester-amide)s with four hyperbranched star arms were obtained. All these poly(ester-amide)s are amorphous materials with glass-transition temperatures in the 190–200°C range and good solubility in polar organic solvents.  相似文献   

2.
Novel hyperbranched poly(amido amine)s containing tertiary amines in the backbones and acryl as terminal groups were synthesized via the Michael addition polymerizations of trifunctional amines with twofold molar diacrylamide. The hyperbranched structures of these poly(amido amine)s were verified by 13C NMR (INVGATE). The polymerization mechanisms were clarified by following the polymerization process with NMR method, and the results show that the reactivity of secondary amine formed in situ is much lower than that of the secondary amine in 1‐(2‐aminoethyl) piperazine (AEPZ) ring and the primary amine. The secondary amine formed in situ was almost kept out of the reaction before the primary and secondary amines in AEPZ were consumed, leading to the formation of the AB2 intermediate, and the further reaction of the AB2 yielded the hyperbranched polymers. The molecular weights and properties of poly(amindo amine)s obtained were characterized by GPC, DSC, and TGA, respectively. Based on the reaction of active acryl groups in the polymers obtained with glucosamine, hyperbranched polymers containing sugar were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5127–5137, 2005  相似文献   

3.
Well‐defined multiarm star block copolymers poly(glycidol)‐b‐poly(methyl methacrylate) (PGOHBr‐b‐PMMAx) with an average number of PMMA arms of 85, 55, and 45 have been prepared. The core‐first approach has been selected as the methodology using atom transfer radical polymerization (ATRP) of MMA from an activated hyperbranched poly(glycidol) as the core. These activated hyperbranched macroinitiators were prepared by esterification of hyperbranched poly(glycidol) (PGOH) with 2‐bromoisobutyryl bromide. The effect of monomer/initiator ratio, catalyst concentration, time, temperature, and solvent on the growing of the arms has been studied in detail in order to optimize the process and to diminish the radical‐radical coupling. The final products and intermediates were characterized by means of size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) and Fourier transform‐infrared (FTIR) spectroscopy. The length of PMMA arms was determined by SEC after cleavage of ester bond linked to PGOH core. Glass transition temperature (Tg), thermal stability and rheological properties of the multiarm star copolymers were also studied. Finally, tapping mode atomic force microscopy (TMAFM) allowed the clear visualization of nano‐sized particles (80–200 nm) corresponding to individual star molecules. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

5.
In this paper, we aimed to develop ultrathin films of hyperbranched polybenzoxazole with a thickness in the range between 1 and 100 nm. They are expected to have great potential for various applications as functional materials due to their high thermal stability, good chemical resistance and mechanical strength. The synthesis of various hyperbranched poly(o-hydroxyamide)s as precursors of polybenzoxazole was examined by the polycondensation of 2,2-bis(3-amino-4-hydroxyphenyl)propane (AHP) and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (AHFP) with 1,3,5-benzenetricarbonyl trichloride (BCC), yielding the corresponding hyperbranched poly(o-hydroxyamide), poly(AHFPm-co-AHPn-co-BCC2.0), with Mn in the range between 12,870 and 22,210 in satisfactory yields. Poly(AHFP3.0-co-BCC2.0), poly(AHFP2.25-co-AHP0.75-co-BCC2.0), and poly(AHFP1.50-co-AHP1.50-co-BCC2.0) showed good solubility and film-forming ability, and ultrathin films 8.9–88.6 nm thick were prepared on silicon wafers. Heating of the ultrathin films of poly(AHFPm-co-AHPn-co-BCC2.0) on a hot plate at 350 °C for 1 h afforded the corresponding ultrathin films of hyperbranched polybenzoxazole, poly(AHFPm-cyclo-AHPn-cyclo-BCC2.0), with a thickness of 5.3–82.4 nm. Double-layer thin films consisting of resist materials on top of hyperbranched polybenzoxazole were also prepared.  相似文献   

6.
Some A2 + B3 and A3 + B3 reagent pairs have been used for the direct polyamidation reaction leading, besides the network formation, to hyperbranched aramid structures. Depending on the chosen experimental conditions, variable amounts of a sol fraction having close similarities with the hyperbranched aramid structures derived from the polyamidation of AB2 monomers, have indeed been obtained. Solubility of the sol fraction in various organic solvents, as well as its thermal properties and its capability of enzyme fixation, have been determined for the various systems under investigation. Future developments are envisaged.  相似文献   

7.
Star‐shaped poly(phenoxy propylene sulfide) [poly (PPS)] were synthesized by anionic polymerization using a trifunctional initiator ( I 1) derived from a trifunctional five‐membered cyclic dithiocarbonate and benzyl amine. Conditions for the anionic polymerization of PPS were optimized to obtain polymers with desired Mns and narrow Mw/Mns. The best catalyst and solvent were DBU and DMF, respectively. The star‐shaped structure of the resulting star poly(PPS) was supported by SEC analysis. The refractive indexes (nD) of the star poly (PPS) were relatively high (>1.64). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 525–531, 2010  相似文献   

8.
In this research, we developed a novel and facile strategy to prepare aliphatic tertiary amine chromophore hyperbranched poly(amino ether ester)s with pH and thermo responsiveness via phosphazene base (t-BuP2) catalyzed oxa-Michael addition polymerization of triethanolamine with ethylene glycol diacrylate at room temperature. UV–vis and fluorescence analyses results showed that the tertiary amine at branching point for hyperbranched poly(amino ether ester)s is very important to retain strong blue fluorescence of tertiary amine chromophore. Moreover, the hyperbranched poly(amino ether ester)s exhibit an aggregation caused quenching (ACQ) fluorescence, solvent induced red-shifted emission, molecular weight, and temperature dependent emission characters. More interestingly, the hyperbranched poly(amino ether ester)s show extreme acid induced quenching fluorescence phenomenon, and also display good water solubility, specific recognition of Fe3+ ion, low cytotoxicity, and bright cell imaging, which could serve as a microenvironment-responding fluorescent probe for application in chemical sensing, cell imaging, drug delivery, or disease diagnostics. This research provides a versatile method for the preparation of stimuli-responsive aliphatic tertiary amine chromophore polymers, and supplies ideas for researchers to explore other unconventional fluorescent polymers for application.  相似文献   

9.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

10.
The trifunctional five‐membered cyclic carbonate 2 and dithiocarbonate 3 were successfully synthesized by the reaction of trifunctional epoxide 1 with carbon dioxide and carbon disulfide, respectively. The crosslinking reactions of 2 with p‐xylylenediamine or hexamethylenediamine were carried out in dimethyl sulfoxide at 100 °C for 48 h to produce the corresponding crosslinked poly(hydroxyurethane)s quantitatively. The crosslinking reactions of 3 with both p‐xylylenediamine and hexamethylenediamine, followed by acetylation of thiol moiety, produced the corresponding crosslinked poly(thioester–thiourethane)s quantitatively. The obtained crosslinked poly(hydroxyurethane)s were thermally more stable than the analogous crosslinked poly(thioester–thiourethane)s, probably because of less thermal stability of thiourethane moiety than hydroxyurethane moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5983–5989, 2004  相似文献   

11.
Novel hyperbranched poly(amido amine)s containing tertiary amines on the backbones and acryl or secondary amines as the surface groups were successfully synthesized via the Michael addition polymerizations of a triacrylamide [1,3,5‐triacryloylhexahydro‐1,3,5‐triazine (TT)] and a difunctional amine [n‐butylamine (BA)] NMR techniques were used to clarify the structures of hyperbranched polymers and polymerization mechanism. The reactivity of the secondary amine formed in situ was much lower than that of the primary amines in BA. When the feed molar ratio was 1:1 TT/BA, the secondary amine formed in situ was almost kept out of the reaction before the BA (AA′) and TT (B3) monomers were consumed, and this led to the formation of A′B2 intermediates containing one secondary amine group and two acryl groups. The self‐polymerization of the A′B2 intermediates produced hyperbranched polymers bearing acryl as surface groups. For the polymerization with the feed molar ratio of 1:2 TT/BA, A′2B intermediates containing one acryl group and two secondary amine groups were accumulated until self‐polymerization started; the self‐polymerization of the intermediates formed hyperbranched polymers with secondary amines as their surface groups. Modifications of surface functional groups were studied to form new hyperbranched polymers. The hyperbranched poly(amido amine)s were amorphous. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6226–6242, 2006  相似文献   

12.
A new controllable approach to synthesize hyperbranched poly(siloxysilanes) via hydrosilylation of A2‐ and B′Bx‐type monomers was developed in this work. A2 monomers (dimethylbis(dimethylsiloxy)siloxane and tetramethyldisiloxane), B′Bx monomers (methylvinyldiallylsilane and vinyltriallylsilane), and the resultant hyperbranched poly(siloxysilanes) were well characterized using FTIR, 1H NMR, 13C NMR, 29Si NMR, and SEC/MALLS. The In situ FTIR results indicate that the controllable polymerization can be carried out quickly and the reaction process was obviously performed in two stages. At the first stage, silicon hydride selectively reacts with vinyl silane groups, which produces intermediate structures with one Si? H and two (or three) allyl groups. Consequently, at the second stage, these intermediates act as new AB2 (or AB3) type monomers and continue to be self‐polymerized to generate hyperbranched polymers. By this novel controllable approach, molecular weights and their polydispersity of the resulted hyperbranched poly(siloxysilanes) can be conveniently regulated via adjusting the process parameters, such as feeding ratio of two monomers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2708–2720, 2008  相似文献   

13.
In this contribution, we present new reduction‐cleavable hyperbranched disulfide bonds‐containing poly(ester triazole)s with limited intramolecular cyclization, which can be synthesized by the Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) of A2 monomer of dipropargyl 3,3′‐dithiobispropionate and B3 monomer of tris(hydroxymethyl)ethane tri(4‐azidobutanoate). The hyperbranched poly(ester triazole)s possess numerous terminal groups and weight‐average molecular weight up to 20,400 g mol?1 with a polydispersity index in the range 1.57–2.17. The CuAAC introduces rigid triazole units into the backbones of hyperbranched poly(ester triazole)s and reduces intramolecular cyclization, which is proved by topological analysis and 1H NMR spectroscopy. The disulfide bonds on backbones endow the reduction‐cleavable feature to the hyperbranched poly(ester triazole)s at the presence of dithiothreitol. It gives a novel and convenient methodology for the synthesis of reduction‐responsive functional polymer with controlled topologies, and the reduction‐cleavable hyperbranched poly(ester triazole)s with limited intramolecular cyclization are expected to possess potential in the application of stimuli‐responsive anticancer drug nanocarriers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2374–2380  相似文献   

14.
Amphiphilic hyperbranched copolymer chains made of large hyperbranched poly(acrylic acid) cores grafted with short polystyrene stickers (HB‐PAAng‐PSn + 1) with different n values (n = 1, 10, 47) were well prepared and confirmed by size exclusion chromatography, Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance. The study on the interchain association behavior of these amphiphilic chains indicates that larger HB‐(PAA)ng‐(PS)n + 1 copolymer chains have a less tendency to undergo interchain association. Moreover, the simple vial‐inversion and rheological experiments show that the apparent critical gel concentration (Cg) decreases with n, but no sol–gel transition was observed for triblock PS‐PAA‐PS even when the concentration is up to 200 g L?1. Further transmission electron microscopy study of the latex particles prepared with HB‐(PAA)ng‐(PS)n + 1 as surfactant reveals that the latex particles are spherical and narrowly dispersed; while the measured latex particle number (Np) indicates the surfactant efficiency of HB‐(PAA)47g‐(PS)48 is poorer than that of triblock PS‐PAA‐PS (n = 1). Finally, pyrene solubilization measurement shows the solubilization efficiency of HB‐(PAA)ng‐(PS)n + 1 copolymers decreases with n, consistent with the previous observed interchain association result. The present study demonstrates that both the chain topology and the styrene weight fraction dominates the final solution properties of amphiphilic HB‐(PAA)ng‐(PS)n + 1 chains in aqueous solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 128–138  相似文献   

15.
In this work, a variety of hyperbranched polymers (HBPs), such as hyperbranched polycarbonates, polyesters, polyurethanes and polyacetals, was successfully synthesized from castor oil and soybean oil based monomers via a A2 + B3 polycondensation. First, B3 monomer triols (TriOL), trialdehydes (TriAD), and tricarboxylic acids (TriAC) were obtained by ozonolysis of castor oil and soybean oil with following reductive or oxidative treatment. Their structures were characterized by 1H NMR and ATR‐FTIR spectroscopy as well as electrospray ionization‐Time of Flight‐mass spectrometry. These trifunctional B3 monomers were applied in the preparation of HBPs. The resulting HBPs had number averaged molar mass (Mn) up to 9400 g/mol and weight averaged molar mass (Mw) up to 40,000 g/mol. Through adjusting the initial molar ratio of A2 to B3 monomers, hydroxyl terminated (from TriOL monomers) or carboxylic acid (from TriAC monomers) terminated HBPs could be obtained. All the HBPs were characterized by 1H NMR, size exclusion chromatography, and DSC. These HBPs are potential candidates for the synthesis of cross‐linked polymeric materials or in biomedical applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2104–2114  相似文献   

16.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

17.
Model silicone networks obtained by curing linear poly(dimethylsiloxane) (PDMS) chains with end‐vinyl groups, (B2), with a polyfunctional silane‐terminated crosslinker of functionality f, (Af), through a hydrosilylation reaction have been widely used. In these networks, the principal characteristics of their ultimate molecular structure are strongly affected by the final extent of reaction reached during the crosslinking reaction. This work analyzes the effect of the initial concentration of the reactive end groups on the maximum attainable extent of reaction under normal bulk crosslinking conditions. This was accomplished by examining the reaction between linear B2 PDMS chains with difunctional and trifunctional silanes. The experimental results were fitted by an exponential equation to have an empirical equation able to predict the maximum extent of reaction to be obtained as a function of the initial concentration of reactive groups. Molecular parameters relevant to this study, such as the degree of polymerization, the weight‐average molecular weight for the A2 + B2 system, or the weight fraction of solubles for the A3 + B2 system, were calculated with a mean field theory (recursive approach). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1099–1106, 2003  相似文献   

18.
We synthesized an AB2‐type monomer, 4‐{4‐[di(4‐aminophenyl)methyl]phenoxy}phthalic acid, which contained one phthalic acid group and two aminophenyl functionalities. The direct self‐polycondensation of the AB2‐type monomer in the presence of triphenylphosphite as an activator afforded a hyperbranched poly(ether imide) with a large number of terminal amino groups. This polymer was characterized with 1H NMR and IR spectroscopy. The degree of branching of the hyperbranched poly(ether imide) was approximately 56%, as determined by a combination of model compound studies and an analysis of 1H NMR spectroscopy integration data. The terminal amino groups underwent functionalization readily. The solubility and thermal properties of the resulting polymers depended on the nature of the chain end groups. In addition, the hyperbranched poly(ether imide) was grafted with polyhedral oligomeric silsesquioxane (POSS). Transmission electron microscopy analysis revealed that the grafted POSS molecules aggregated to form a nanocomposite material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3726–3735, 2003  相似文献   

19.
Novel trifunctional monomers based on renewable resources were prepared and subsequently polymerized via the Diels‐Alder (DA) polycondensation between furan and maleimide complementary moieties. Three basic approaches were considered for these nonlinear DA polycondensations, namely the use of (i) a bisfuran monomer in combination with a trismaleimide (A2 + B3 system) and (ii) a trisfuran monomer in conjunction with a bismaleimide (A3 + B2 system) leading to branched or crosslinked materials, and (iii) the use of monomers incorporating both furan and maleimide end groups (A2B or AB2 systems), which lead to hyperbranched structures. The application of the retro‐DA reaction to the ensuing polymers confirmed their thermoreversible character. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
It has been a challenge to synthesize high molecular weight and soluble conjugated hyperbranched poly(1,2,3‐triazole)s (hb‐PTAs). In this paper a series of soluble hyperbranched polytriazoles, whose number‐average molecular weight (Mn) and polydispersity index ranged in (1.2–3.3)×104 and 1.7–3.0, respectively, were synthesized with A2+B3 approach. In the polymerization process, diazides A1 – A4 and triyne B1 were used as A2 and B3 monomers; Cu(I)‐catalyst, THF and water were used as their reaction system. At room temperature the final molecular weight could be controlled through reaction time, so finally we obtained soluble conjugated hyperbranched poly(1,2,3‐triazole)s hb‐PTAs (1–4 ). The polymers were soluble in common organic solvents, and all emitted blue light; the films of polymers emitted yellow and blue light, due to the difference in the aggregation of their chromophoric units in the solid state. The thermal properties of the final copolymers were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号