首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
N,N-dimethylacrylamide (DMAA) was graft copolymerized on poly[(trimethylsilyl)propyne] (PTMSP) by single electron reduction of PTMSP with potassium naphthalenide (K-Naph), followed by anion polymerization of DMAA from the carbanion formed in the reduction. A hard and practically non-water-swelling PTMSP-gr-poly(DMAA) was obtained under the conditions using controlled amount of K-Naph and DMAA. The graft copolymer was characterized with regard to structure, number-averaged molecular weight, and the amount of grafting poly(DMAA) determined by the relative absorbance of the IR absorption band assigned to the CO and SiC H functionalities (ACO/ASiC H). The oxygen permeability and water contact angle (θ) of the graft copolymer were evaluated while varying the amount of grafting poly(DMAA). The graft copolymer proved to be highly oxygen permeable (165 Barrers) and hydrophilic (θ = 27°). Its transparency was also elucidated with UV–vis spectra. This graft copolymer was proposed as a promising candidate for use as a hard contact lens material. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 603–610, 1998  相似文献   

2.
We have recently uncovered a general indium(I)‐catalyzed method for allylations and propargylation of acetals and ketals with a water‐ and air‐stable allyl boronate. By using a more reactive allyl borane, we have successfully extended this methodology to the more challenging C C coupling with ethers. Herein, we report an improved methodology for the indium(I)‐catalyzed allylation of acetals and ethers, through combination of the allyl boronate with a commercially available “hard” Lewis acid, B‐methoxy‐9‐BBN (BBN=borabicyclo[3.3.1]nonane), as an effective co‐catalyst. Significantly, our work highlights for the first time the correlation between the Lewis acidity of “electrophilic” boron‐based compounds and their “nucleophilic” reactivity in Csp3–Csp3 couplings, catalyzed by a “soft” low‐oxidation main group metal. In addition, we also report several applications of these methodologies to the selective synthesis of various carbohydrate derivatives.  相似文献   

3.
Together with the known chromium (II)/silica gel catalyst (Phillips catalyst) for the polymerization of ethylene, two new ones have been investigated. It was found that a chromium(II)-“repoly” catalyst (prepared by short reaction of the chromium(II)/silica gel with ethylene at temperatures between 100 and 225°C) and a chromium(III)/silica gel catalyst have up to hundred times higher activity than the chromium(II) one. Activation energies were calculated as 54.6, 49.6 and 43.8 kJ per mol, respectively. The number of active sites was determined by measuring the integrated absorbance of the C? H and C?O stretching vibrations of the polymer. At low chromium concentration (0.056%) roughly 50% of all chromium was catalytically active in the case of chromium(II) and chromium(III) on silica gel. For the chromium(II)-“repoly” catalyst all chromium atoms can be active. The turnover numbers for the polymerization at 20°C were calculated as 0.1 (chromium(II)), 7.5 (chromium(II)-“repoly”) and 20 (sec?1 atm?1) (chromium(III)).  相似文献   

4.
Discovering fluorescence of existing compounds, which are generally regarded as non‐fluorescent, is of important academic and technical significance. This article reports the fluorescence of common compounds containing pyrrolidone ring(s) and their oxidized hydrolyzates. Poly(N‐vinylpyrrolidone) (PVP), polymerized from a very weak fluorescent monomer N‐vinyl‐2‐pyrrolidone (NVP), exhibits strong intrinsic fluorescence. Moreover, the fluorescence of its “hydrolyzate” is dramatically enhanced by about 1000 times. The “hydrolyzate” of N‐methyl‐pyrrolidone (NMP) also exhibits significantly enhanced fluorescence. By studying the chemical structures and fluorescence of the hydrolyzates, the enhanced fluorescence is attributed to the formation of secondary amine oxide. The much stronger fluorescence of the polymers compared to the corresponding small molecular compounds is ascribed to the “aggregation‐induced emission” (AIE) effect of the luminophores. PVP and its oxidized hydrolyzate also show some phenomena different to the common AIE effect. The fluorescence of PVP and its oxidized hydrolyzate shows stimuli response to metal ions and pH values. This study introduces novel fluorescent materials for various potential applications.

  相似文献   


5.
A charge-transfer-type complex formation between poly(4-vinyl-N-propylpyridinium bromide) (C3PVP), poly(4-vinyl-N-butylpyridinium bromide) (C4PVP) or poly(4-vinyl-N-benzylpyridinium chloride) (BzPVP), and indole derivatives or between polymer containing flavin mononucleotide residues and indole derivatives was studied in the presence of simple and polyelectrolytes. The association constant (K) of the complex formation with indole acetate increased in the order BzPVP > C4PVP > C3PVP, which indicated an important contribution by hydrophobic interaction. The addition of simple and polyelectrolytes decreased the association constants. This was explained by the “secondary salt effect” of the salts. The importance of the electrostatic interactions in the complexation systems was obvious. The influence of simple electrolytes on the K values was discussed theoretically according to Manning's theory.  相似文献   

6.
Benzaldehyde‐functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p‐hydroxy benzaldehyde. Via UV‐induced Paterno–Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl‐functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol−1, Đ = 1.12 and poly(N‐isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol−1, Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV‐induced grafting‐to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of “smart” surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno–Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting‐to approaches whereby its overall performance seems to be close to that of radical thiol‐ene reactions.

  相似文献   


7.
Allyl acrylate and allyl methacrylate were polymerized by anionic initiators to soluble linear polymers containing allyl groups in the pendant side chains. The pendant unpolymerized allyl groups of the resulting linear poly(allyl acrylates) were shown to be present by: (1) the disappearance of the acrylyl and methacrylyl double bond absorptions in the infrared spectra in the conversions of monomers to polymers; (2) postbromination of the allyl bonds in the linear polymer; (3) the disappearance of the allyl groups absorptions in the infrared spectra of the brominated linear polymers; and (4) the thermal- and radical-initiated crosslinking of the linear polymers through the allyl groups. Allyl acrylate and allyl methacrylate show great reluctance to copolymerize with styrene under anionic initiation, but copolymerize readily with methyl methacrylate and acrylonitrile. Block copolymers were prepared by reacting allyl methacrylate with preformed polystyrene and poly(methyl methacrylate) anions. The linear polymers and copolymers of allyl acrylate may be classified as “self-reactive” polymers which yield thermosetting polymers. Bromination of the linear polymers offers a convenient method of producing self-extinguishing polymers.  相似文献   

8.
A novel trithiocarbonate reversible addition−fragmentation chain transfer (RAFT) reagent, 3-azidopropyl (4-[fluorosulfonyl]benzyl)trithiocarbonate (Az-FSBCT), which has both clickable azidopropyl and sulfonyl fluoride moieties, was designed and synthesized. Using the RAFT agent Az-FSBCT and triethylboron as an initiator, well-defined poly(N-vinylpyrrolidone) (PVP), in which the azide and sulfonyl fluoride groups are at the α and ω positions of the polymer chains, were prepared without prior deoxygenation at room temperature. Moreover, the possibilities for the construction of new functionalized polymers were also demonstrated by a “click” copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and sulfur(VI)-fluoride exchange (SuFEx) postreaction using these terminal functional PVPs.  相似文献   

9.
Densely grafted copolymers were synthesized using the “grafting from” approach via the combination of reversible addition‐fragment chain transfer polymerization (RAFT) and atom transfer radical polymerization (ATRP). First, a novel functional monomer, 2,3‐di(2‐bromoisobutyryloxy)ethyl acrylate (DBPPA), with two initiating groups for ATRP was synthesized. It was then polymerized via RAFT polymerization to give macroinitiators for ATRP with controlled molecular weights and narrow molecular weight distributions. Last, ATRP of styrene was carried out using poly(DBPPA)s as macroinitiators to prepare comblike poly(DBPPA)‐graft‐polystyrenes carrying double branches in each repeating unit of backbone via “grafting from” approach. Furthermore, poly(DBPPA)‐graft‐[polystyrene‐block‐poly(t‐BA)]s and their hydrolyzed products poly(DBPPA)‐graft‐[polystyrene‐block‐poly(acrylic acid)]s were also successfully prepared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 362–372, 2008  相似文献   

10.
We report the synthesis of random polyampholyte brushes containing 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid (MAA). The preparation of polyampholyte brushes is performed by the “grafting from” strategy using surface‐initiated atom transfer radical polymerization (ATRP). The first step consists in the formation of the self‐assembled monolayer of the ATRP initiator. Secondly, the chains are grown from the surface by controlled/“living” radical polymerization. The random copolymer brushes and the corresponding homopolymers brushes containing 2‐(dimethylamino)ethyl methacrylate and tert‐butyl methacrylate (tBuMA) are prepared. The last step is the deprotection of the tBuMA form to the MAA segment by in situ hydrolysis reaction. The annealed DMAEMA group can also be converted to the quenched form by in situ quaternization reaction. This results in the formation of “annealed” and “semiannealed” polyampholyte brushes. The “annealed” polyampholyte corresponds to the random copolymer that contains only annealed units, weak acid and weak base. The “semiannealed” polyampholyte consists of the mixture of annealed (weak acid) and quenched (quaternized segment) units. Polyampholyte brushes with various grafting densities are synthesized and carefully characterized using surface techniques such as ellipsometry and FTIR‐ATR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4305–4319, 2008  相似文献   

11.
Dendritic polymers‐based unimolecular micelles with enhanced stability are attractive carriers. However, the preparation of dendrimers or dendrons with higher generation remains substantially synthetic challenge due to the increased steric hindrance, multistep and tedious preparation, and low yields. The adoption of Boltorn H40, a commercially available dendritic polymer of Boltorn family containing multiple hydroxyl groups with various functionalities as a dendrimer‐based starting core template for the generation of hyperbranched polymers, offers a straightforward solution to address this problem. To develop universal strategies toward H40‐based amphiphilic block copolymers, the “grafting from” and “grafting to” approaches were both applied in this study. The reduction‐insensitive block copolymers, H40‐b‐poly(ɛ‐caprolactone)‐b‐poly(oligo(ethylene glycol) monomethyl ether methacrylate) (H40‐b‐PCL‐b‐POEGMA), were synthesized by “grafting from” including sequential ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The core structure and the polymer composition of the nonreducible amphiphilic hyperbranched block copolymers were optimized toward better properties and performance for drug delivery applications, and H40‐PCL15b‐POEGMA23 was screened as the best polymer construct relative to H20‐PCL15b‐POEGMA23 and H40‐PCL15b‐POEGMA32 in terms of micelle stability and drug loading capacity. Therefore, the reducible H40‐b‐PCL‐SS‐POEGMA with an identical core and polymer composition to that of H40‐PCL15b‐POEGMA23 was further prepared by “grafting to” using click coupling between H40‐PCL‐azide and P(OEGMA)‐alkyne. The delivery efficacy evaluated by an in vitro cytotoxicity study revealed that the resulting DOX‐loaded reducible micelles of H40‐PCL15‐SS‐POEGMA23 produced greater cytotoxicity in cancer cells than in normal cells and macrophages, therefore, are promising carriers for anticancer drug delivery. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1383–1394  相似文献   

12.
13.
Three new polymerizable diols, based on mono‐, di‐, and tri‐O‐allyl‐L ‐arabinitol derivatives, were prepared from L ‐arabinitol as versatile materials for the preparation of tailor‐made polyurethanes with varied degrees of functionalization. Their allyl functional groups can take part in thiol‐ene reactions, to obtain greatly diverse materials. This “click” reaction with 2‐mercaptoethanol was firstly studied on the highly hindered sugar precursor 2,3,4‐tri‐O‐allyl‐1,5‐di‐O‐trityl‐L ‐arabinitol, to apply it later to macromolecules. A polyurethane with multiple pendant allyl groups was synthesized by polyaddition reaction of 2,3,4‐tri‐O‐allyl‐L ‐arabinitol with 1,6‐hexamethylene diisocyanate, and then functionalized by thiol‐ene reaction. The coupling reaction took place in every allyl group, as confirmed by standard techniques. The thermal stability of the novel polyurethanes was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). This strategy provides a simple and versatile platform for the design of new materials whose functionality can be easily modified. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
When several diallyl esters were subjected to ADMET using Grubbs “first generation” catalyst only oligomerization occurred (DPs < 7), but with allyl hex-5-enoate the product had a DP of 14, and with allyl undec-10-enoate the products usually had DPs in the range 41–79. It is suggested that with the diallyl esters an intermediate is formed in which the ester carbonyl chelates onto the metal centre and that this is sufficiently stable to suppress polymerization. One possible explanation for the successful polymerization of allyl undece-10-enoate is that it is achieved indirectly via a ring-closing metathesis (RCM) to give a macrocycle that then reacts further by an entropically driven ring-opening polymerization (ED-ROMP) to give the final polymer. A cyclo-depolymerization (CDP) involving the metathesis of substituted allyl ester moieties in a polymer backbone and ED-ROMPs involving the metathesis of substituted allyl ester moieties in macrocycles catalyzed by Grubbs’ “first generation” catalyst and/or the “second generation” catalyst were also successful.  相似文献   

15.
A method to explore head-to-head ϕ back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2(L1)2 ( 1 ), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 ( 2 ) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2[N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (ϕ) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.  相似文献   

16.
Some regularities of radical alternating copolymerization of maleic anhydride with allyl chloroacetate are studied. The formation of donor–acceptor complexes between comonomers with complexing constant Kc = 0.052 L/mol is found using 1H NMR spectroscopy. The kinetic parameters for this copolymerization reaction are found and the quantitative contribution of monomer complexes to chain-growth radical reactions is calculated. It is shown that either a “free-monomer” mechanism (dilute solutions) or a “mixed” mechanism (concentrated solutions) prevails for chain growth during radical copolymerization depending on total monomer concentration. It is found that inhibition of degradative chain transfer in the course of the reaction studied takes place owing to the presence of α-chlorine atom in the allyl chloracetate molecule and formation of charge transfer complex.  相似文献   

17.
Statistical copolymers of styrene and ortho-vinylbenzaldehyde (o-VBA) have been prepared by free radical solution polymerization using azodiisobutyronitrile initiator. Subsequent “grafting from” reactions could be induced through photolytic excitation of the pendant aldehyde carbonyl functionality in the presence of methyl methacrylate monomer; however, actual grafting of polymethylmethacrylate (PMMA) to the copolymer backbone was shown to be quite low (< 6% graft-on). Another more promising route involved abstraction of labile benzylic hydrogens of the copolymer by chemical methods [e.g., dibenzoyl peroxide or α,α′-di-(t-butylperoxy)diisopropylbenzene] to produce potential graft sites. Graft copolymers prepared by this procedure had PMMA content ranging up to about 30% (by weight), depending upon polymerization conditions. Higher grafting levels were generally observed with increasing reaction temperature and prolonged reaction times. While some grafting evidently originated from the copolymer backbone, the presence of the o-VBA moiety significantly enhanced the ultimate percent grafting. The resulting multicomponent polymer systems displayed substantial miscibility as evidenced by the transparency of their cast films as well as by their glass transition behavior.  相似文献   

18.
The dienol-benzene rearrangement of syn and anti-4-allyl-4-methylcyclohexa-2,5-dien-1-ol (syn and anti 15) occurs by formation of a benzonium ion intermediate in p-toluene-sulphonic acid in ether below 0° and leads to a mixture of 2-, 3- and 4-allyltoluenes in the ratio 54:10:36. By the introduction of 14C-, D- and methyl labelled dienols it is shown that only the allyl group migrates and that this rearrangement is an intramolecular, one-step process. The formation of 2-allyltoluene occurs with retention, whereas the 3- and 4-allyltoluenes are formed by inversion of the carbon skeleton of the migrating allyl group. These rearrangements can be therefore classified as suprafacial, aromatic sigmatropic reactions of the order [1,2], [3,3] and [3,4]. The transition state can be postulated as representing a positively charged complex consisting of interacting allyl and tolyl radicals. The interaction of the two parts is controlled by the symmetry of the highest occupied π-orbitals (ψ3 for toluene and ψ2 for the allyl group) in agreement with the Woodward-Hoffmann rules. The better “distribution” of the charge in the transition state of these reactions in comparison to the ground state is chiefly responsible for the CoPE-like [3,3] sigmatropic reaction occurring at low temperatures. In general, sigmatropic reactions in charged systems are faster. The rearrangement of syn and anti 2-allyl-2-methylcyclohexa-3,5-dien-1-ol (syn and anti 28) gives results similar to those obtained with the para-allyldienols. The thermal rearrangement of 15 and 28 gives 3-allyltoluene by a [3,3] sigmatropic Cope rearrangement followed by elimination of water.  相似文献   

19.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

20.
Treatment of the salt [PPh4]+[Cp*W(S)3]? ( 6 ) with allyl bromide gave the neutral complex [Cp*W(S)2S‐CH2‐CH?CH2] ( 7 ). The product 7 was characterized by an X‐ray crystal structure analysis. Complex 7 features dynamic NMR spectra that indicate a rapid allyl automerization process. From the analysis of the temperature‐dependent NMR spectra a Gibbs activation energy of ΔG (278 K)≈13.7±0.1 kcal mol?1 was obtained [ΔH≈10.4±0.1 kcal mol?1; ΔS≈?11.4 cal mol?1 K?1]. The DFT calculation identified an energetically unfavorable four‐membered transition state of the “forbidden” reaction and a favorable six‐membered transition state of the “Cope‐type” allyl rearrangement process at this transition‐metal complex core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号