首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, biodegradable fluorine‐containing polyurethanes (PU/OFHD) were synthesized using 4,4'‐diphenylmethane diisocyanate, polycaprolactone diol (PCL), and 2,2,3,3,4,4,5,5,‐octafluoro‐1,6‐hexanediol (OFHD). PCL is a biodegradable soft segment, and OFHD is a fluoro chain extender. In addition, other polyurethanes (PU/HD) were synthesized using 4,4'‐diphenylmethane diisocyanate, PCL, and another chain extender [i.e., 1,6‐hexanediol (HD)] for comparison. Gel permeation chromatography analysis indicated that the molecular weight of PU/OFHD is greater than that of PU/HD. 19F nuclear magnetic resonance analysis revealed that the OFHD chain extender was successfully incorporated into the backbone of PU. According to Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy analyses, strong interactions between the C=O and CF2 groups in PU/OFHD exist. Based on thermal analysis, PU/OFHD exhibited an initial decomposition temperature that was 6.5–7.9°C higher than that of PU/HD. Differential scanning calorimetry and dynamic mechanical analysis analyses indicated that both the glass transition (Tg) and dynamic Tg of PU/OFHD are higher than those of PU/HD. Mechanical property analysis demonstrated that the tensile strength of PU/OFHD is higher than that of PU/HD. Moreover, PU/OFHD exhibited better chemical resistance than PU/HD. The scanning electron microscope images indicated that both PU/HD and PU/OFHD exhibited higher hydrolytic degradation at a higher PCL content. However, PU/OFHD is less degradable than PU/HD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Polyurethane (PU) sheets and foams having plant components in their network were prepared by using the following procedure. Polyethylene glycol (PEG) was mixed with one of the following; molasses, lignin, woodmeal, or coffee grounds. The mixture obtained was reacted with diphenylmethane diisocyanate (MDI) at room temperature, and precured PUs were prepared. The precured PUs were heat-pressed and PU sheets were obtained. In order to make PU foam, the above mixture was reacted with MDI after the addition of plasticizer, surfactant (silicone oil), catalyst (di-n-butyltin dilaurate), and droplets of water under vigorous stirring. The glass transition temperature, tensile and compression strengths, and Young's modulus of the PU sheets and foams increased with an increasing amount of plant components. This suggests that saccharide and lignin residues act as hard segments in PUs. It was found that the PUs obtained were biodegradable in soil. The rate of biodegradation of the PUs derived from molasses and coffee grounds was between that of cryptomeria (Cryptomeria japonica) and beech (Fagus sieboldi).  相似文献   

3.
Environmentally compatible polymers such as poly(ε-caprolactone) (PCL) and polyurethane (PU) derivatives from PCL's were synthesized from saccharides, polysaccharides and lignins such as glucose, fructose, sucrose, cellulose, cellulose acetate, alcoholysis lignin, kraft lignin and sodium lignosulfonate. Flexible and rigid PU sheets and foams were also prepared by the reaction of OH groups of saccharides and lignins with isocyanates such as toluene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI). Glass transition temperatures (Tg's), cold-crystallization temperatures (Tcc's) and melting temperatures (Tm's) of saccharide- and lignin-based PCL's and PU's were determined by differential scanning calorimetry (DSC), and phase diagrams were obtained. Methods of controlling mechanical properties such as stress and elasticity of PU's through changing thermal properties such as glass transition temperature were established. Thermogravimetry (TG) and TG-Fourier transform infrared spectrometry (FTIR) were also carried out in order to analyze the degradation temperature and evolved gases from the above obtained polymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Graft copolymers of polycaprolactone (PCL) on polymethacrylate (PMMA) backbone have been successfully synthesized and characterized by SEC, 1H and 13C NMR spectroscopy. The strategy used consisted of polymerizing ε-CL, followed by end-functionalization of the resulting PCL using methacryloyl chloride. Free radical polymerization of the methacryl double bond lead to the C-C polymer backbone and an overall graft copolymer. The polymerization of ε-caprolactone was achieved using Al-Schiff's base isopropoxide (HAPENAlOiPr) in DCM at ambient temperature. SEC and MALDI analysis of the polymers confirmed that mostly linear chains were obtained with the Al initiator, up until high monomer conversion. The low molar mass PCL was then end-capped with a methacryloyl group, in a quantitative manner, as evidenced by 1H NMR. The macromonomer thus obtained was copolymerized in small proportions with methyl methacrylate by conventional free radical polymerization and atom transfer radical polymerization (ATRP). Analysis of the products by NMR and SEC showed the presence of true graft copolymers and the absence of homopolymers.  相似文献   

5.
Polyurethane (PU) coatings are widely used for variety of high‐performance applications in today's coating technology. The emerging hyperbranched polymers having three‐dimensional morphology have opened a new avenue to tailor the architecture of PU coatings. The methodology followed here is based on preparation of PU coatings from hyperbranched polyester. Initially, different hyperbranched polyester polyols (HPs) were synthesized by varying the hydroxyl‐terminated precursors that is, pentaerythritol, trimethylol propane or glycerol and keeping the diacid that is, adipic acid quantity constant at various mole ratios of 1:0.6, 1:0.8, 1:0.9, and 1:1, respectively. The obtained HPs were characterized by nuclear magnetic resonance (NMR) spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF)‐mass spectrometry, and Fourier transform‐infrared (FTIR) spectroscopy. The degree of branching and the quantity of different structural units present in the various HPs were calculated by integrating the quaternary carbon and carbonyl zone in 13C NMR spectroscopy. The extent of condensation in different HPs was also calculated from 1H NMR spectra. Later on, NCO‐terminated PU prepolymers (NCO‐PU) were synthesized by reacting HPs with isophorone diisocyanate (IPDI) at NCO/OH ratio of 1.6:1. In the third step, the excess NCO content in the NCO‐capped PU prepolymers were reacted with atmospheric moisture and hyperbranched polyurethane (HPU) coatings were formed. The coating films were analyzed by FTIR and dynamic mechanical thermal analysis instruments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2673–2688, 2007  相似文献   

6.
A novel segmented polyurethane/clay (PU/clay) nanocomposite based on poly(caprolactone), diphenylmethane diisocyanate, butanediol, and poly(caprolactone)/clay prepolymer was synthesized as evidenced by FTIR and X-ray diffraction studies. Poly(caprolactone)/clay (PCL/clay) prepolymer was first synthesized in a nanocomposite form as confirmed by X-ray diffraction. X-ray diffraction study showed that PU/clay contained crystalline structure due to the presence of PCL/clay. In mechanical properties, about 1.4% PCL/clay in PU/clay resulted in a large increase in the elongation of PU/clay. However, when the amount of PCL/clay was 4.2%, the elongation of PU/clay was reduced drastically. This behavior indicated that PU/clay can be transformed from an elastomer to a thermoplastic material as the amount of PCL/clay in PU/clay increased. Additionally, the lap shear stress of PU/clay was at least three times that of neat PU as a result of the PCL/clay component. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2225–2233, 1999  相似文献   

7.
Remembering more than one permanent shape is an attractive research topic for shape memory materials (SMMs). In this paper, multiple crystalline shape memory polyurethanes (SMPUs) are prepared with PCL10000 and PTMG2900 by a three‐step polymerization method. DSC and WAXD results show that the obtained polyurethane contains, simultaneously and independently, two kinds of crystals. In addition, it is confirmed through DMA analysis that reversible soft phase and hard domains are formed in the PCL‐PTMG based SMPU system; and two‐step modulus decreases at low temperature range can be obtained in the SMPU with suitable mass proportion of PCL to PTMG, e.g., 1:7. Thus, shape memory effect (SME) can be achieved in this system. Moreover, it is found that the PTMG soft segment dominates the shape memory effect when the PCL mass is lower than that of PTMG; while the PCL soft segment dominates the SME when PCL mass is higher than that of PTMG; and a two‐step programing shape recovery can be achieved when the mass proportion of PCL/PTMG reaches a balance value, e.g., 3:5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Herein, the electrospinning method, as an effective approach, was utilized to fabricate poly (ε‐caprolactone)‐based polyurethane (PCL‐based PU) fibers. PCL was synthesized by ring‐opening polymerization, and characterized by proton nuclear magnetic resonance (1H NMR) and Fourier‐transform infrared (FTIR) spectroscopies. Afterward, PU was prepared by step‐growth polymerization. The effects of solution concentration and solvent type on fibers' diameter were investigated. Scanning electron microscopy (SEM) images revealed that the optimum solution was N, N‐dimethylformamide(DMF): chloroform with a ratio of 60:40. In addition, results showed that bead‐less nanofibers could be achieved by a concentration of 5 w/v% (polymer to solvent). Various optimum practical parameters, such as applied voltage, feeding rate, and needle‐to‐collector distance, were obtained and compared with the results of response surface methodology (RSM). On the other hand, the mechanical evaluations indicated that the porous structure of scaffolds caused them to possess lower mechanical properties, as well as shape fixity ratios than those of bulk samples.  相似文献   

9.
The intermolecular hydrogen‐bonding interaction and miscibility between enzymatically prepared novel polyphenols [poly(bisphenol A) and poly(ptert‐butyl phenol)] and poly(ε‐caprolactone) (PCL) were investigated as a function of composition by Fourier transform infrared spectroscopy (FTIR) and DSC. The blend films of PCL and polyphenols were prepared by casting polymer solution. The FTIR spectra clearly indicated that PCL and polyphenols interact through strong intermolecular hydrogen bonds formed between the PCL carbonyls and the polyphenol hydroxyl groups. The melting point and degree of crystallinity of the PCL component decreased with an increased polyphenol content. A single glass‐transition temperature was observed for the blend, and its value increased with the content of polyphenol, indicating that PCL and polyphenols are miscible in the amorphous state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2898–2905, 2001  相似文献   

10.
The hydrogen‐bonding strength of poly(?‐caprolactone) (PCL) blends with three different well‐known hydrogen‐bonding donor polymers [i.e., phenolic, poly(vinyl‐phenol) (PVPh), and phenoxy] was investigated with differential scanning calorimetry and Fourier transform infrared spectroscopy. All blends exhibited a single glass‐transition temperature with differential scanning calorimetry, which is characteristic of a miscible system. The strength of interassociation depended on the hydrogen‐bonding donor group in the order phenolic/PCL > PVPh/PCL > phenoxy/PCL, which corresponds to the q value of the Kwei equation. In addition, the interaction energy density parameter calculated from the melting depression of PCL with the Nishi–Wang equation resulted in a similar trend in terms of the hydrogen‐bonding strength. Quantitative analyses on the fraction of hydrogen‐bonded carbonyl groups in the molten state were made with Fourier transform infrared spectroscopy for all systems, and good correlations between thermal behaviors and infrared results were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1348–1359, 2001  相似文献   

11.
Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly(epsilon-caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic routes: either PCL is melt-blended to the clay or it is grafted to the clay platelets by in situ polymerization. The microscopic morphology of the nanocomposites was characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and modulated temperature differential scanning calorimetry. When using free PCL, intercalated composites are formed, with clay aggregates that can have micrometric dimensions and a morphology similar to that of the talc particles used as fillers in commercial CPE. PCL crystallizes as long lamellae dispersed in the polymer matrix. When using grafted PCL, the nanocomposite is intercalated/exfoliated, and the clay stacks are small and homogeneously dispersed. PCL crystallizes as lamellae and smaller crystals, which are localized along the clay layers. Thanks to the grafting of PCL to the clay platelets, these crystalline domains are thought to form a network with the clay sheets, which is responsible for the large improvement of the mechanical properties of these materials.  相似文献   

12.
Polyurethane (PU) foams derived from molasses were placed in soil for various periods from 3 to 12 months. Thermal properties of PU's before and after biodegradation were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). Glass transition of PU's after 3 month's degradation was separated into two stages indicating that molecular chains of the original and decomposed portions move independently. Based on variation of glass transition temperature (Tg), heat capacity difference at TgCp), thermal degradation temperature and mass loss, the degradation mechanism of PU was established.  相似文献   

13.
Blends of two different biodegradable polyesters, poly(3-hydroxybutyrate) (PHB) and low molecular weight polycaprolactone (PCL), were obtained through solution casting and their miscibility and crystallinity were studied. The materials were characterized by wide angle X-ray diffraction, differential scanning calorimetry (DSC) and time-domain nuclear magnetic resonance (TD-NMR). Blends with PCL concentrations higher than 60% (w/w) were not obtained due the inability of low molecular weight PCL to form films by this method. The DSC technique revealed that the films were not miscible since there were no changes in the PHB glass transition temperature (Tg) after the PCL addition. However, the TD-NMR technique showed some partial miscibility, observed in the blend containing 10% (w/w) PCL, revealing domains around 30 nm, where the spin diffusion process was extremely close to that observed in the pure polymers. Other than that, the transversal relaxation showed that the partial miscibility of this composition occurs predominantly in the chain segments located in the interphase intercalation of the rigid regions, reducing the systems' crystallinity. These results are in accordance with the findings obtained through the WAXD analysis.  相似文献   

14.
Poly(ε‐caprolactone) (PCL), cellulose acetate (CA) and their blends were characterized by their tensile strength, differential scanning calorimetry (DSC) and optical microscopy (OM). The compatibility of the blends was investigated and the OM results showed that CA tended to disperse as discrete particles in PCL. Thermal analysis showed the characteristic melting temperature peaks for PCL and CA in all blends, indicating that the compounds were immiscible. The addition of CA to PCL increased slightly the crystallinity of PCL, decreased the elongation at yield and the tensile strength up to 40/60 PCL/CA (w/w), which suggested incompatibility between the polymers. Together, these results indicate the absence of a strong chemical interaction between the two polymers. In agreement with this, the addition of CA to blends with PCL increased Young's modulus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, two types of magnetic polyurethane (PU) elastomer nanocomposites using polycaprolactone (PCL) and polytetramethylene glycol (PTMG) as polyols were synthesized by incorporating thiodiglycolic acid surface modified Fe3O4 nanoparticles (TSM‐Fe3O4) into PU matrices through in situ polymerization method. TSM‐Fe3O4 nanoparticles were prepared using in situ coprecipitation method in alkali media and were characterized by X‐ray diffraction, Fourier Transform Infrared Spectrophotometer, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The effects of PCL and PTMG polyols on the properties of the resultant PUs were studied. The morphology and dispersion of the nanoparticles in the magnetic nanocomposites were studied by Scanning Electron Microscope. It was observed that dispersion of nanoparticles in PTMG‐based magnetic nanocomposite was better than PCL‐based magnetic nanocomposite. Furthermore, the effect of polyol structure on thermal and mechanical properties of nanocomposite was investigated by Thermogravimetric Analysis and Dynamic Mechanical Thermal Analysis. A decrease in the thermal stability of magnetic nanocomposites was found compared to pure PUs. Furthermore, DMTA results showed that increase in glass transition temperature of PTMG‐based magnetic nanocomposite is higher than PCL‐based magnetic nanocomposite, which is attributed to better dispersion of TSM‐Fe3O4 nanoparticles in PTMG‐based PU matrix. Additionally, magnetic nanocomposites exhibited a lower level of hydrophilicity compared to pure PUs. These observations were attributed to the hydrophobic behavior of TSM‐Fe3O4 nanoparticles. Moreover, study of fibroblast cells interaction with magnetic nanocomposites showed that the products can be a good candidate for biomedical application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The miscibility of poly(4-hydroxystyrene-co-methoxystyrene) (HSMS) and poly(ε-caprolactone) (PCL) was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). HSMS/PCL blends were found to be miscible in the whole composition range by detecting only a glass transition temperature (Tg), for each composition, which could be closely described by the Fox rule. The crystallinity of PCL in the blends was dependent on the Tg of the amorphous phase. The greater the HSMS content in the blends, the lower the crystallinity. The polymer–polymer interaction parameter, χ32, was calculated from melting point depression of PCL using the Nishi-Wang equation. The negative value of χ32 obtained for HSMS/PCL blends has been compared with the value of χ32 for poly(4-hydroxystyrene) (P4HS)/PCL blends. The specific nature, quantitative analysis, and average strength of the intermolecular interactions in HSMS/PCL and P4HS/PCL blends have been determined at room temperature and in the molten state by means of Fourier transform infrared spectroscopy (FTIR) measurements. The FTIR results have been in good correlation with the thermal behavior of the blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 95–104, 1998  相似文献   

17.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Polyurethane (PU) has been prepared by using polyether polyol (jagropol oil) and 1,6- hexamethylene diisocyanate (HMDI) as a cross-linker. The organically modified montmorillonite clay (MMT) is well-dispersed into urethane matrix by an in situ polymerization method. A series of PU/MMT nanocomposites have been prepared by incorporating varying amounts of nanoclay viz., 1, 3, 5 and 6 wt %. Thermogravimetric analysis (TGA) of the PU/MMT nanocomposites has been performed in order to establish the thermal stability and their mode of thermal degradation. The TGA thermograms exhibited the fact that nanocomposites have a higher decomposition temperature in comparison with the pristine PU. It was found that the thermal degradation of all PU nanocomposites takes place in three steps. All the nanocomposites were stable up to 205°C. Degradation kinetic parameters of the composites have been calculated for each step of the thermal degradation processes using three mathematical models namely, Horowitz–Metzger, Coats–Redfern and Broido's methods.  相似文献   

19.
We successfully prepared a series of transparent materials with semi‐interpenetrating polymer networks (semi‐IPNs) from castor‐oil‐based polyurethane (PU) and benzyl starch (BS). The miscibility, morphology, and properties of the semi‐IPN films were investigated with attenuated total reflection/Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, scanning electron microscopy, wide‐angle X‐ray diffraction, electron spin resonance (ESR), ultraviolet–visible spectroscopy, and tensile testing. The results revealed that the semi‐IPN films had good or certain miscibility with BS concentrations of 5–70 wt % because of the strong intermolecular interactions between PU and BS. With an increase in the concentration of BS, the tensile strength and Young's modulus of the semi‐IPN materials increased. The ESR data confirmed that the segment volume of PU in the semi‐IPNs increased with the addition of BS; that is, the chain stiffness increased as a result of strong interactions between PU and BS macromolecules. It was concluded that starch derivatives containing benzyl groups in the side chains more easily penetrated the PU networks to form semi‐IPNs than those containing aliphatic groups, and this led to improved properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 603–615, 2005  相似文献   

20.
Epoxy compound based on diglycidyl ether of bisphenol A (DGEBA), methyl tetrahydrophthalic anhydride (MTHPA) as hardener and 2,4,6-tris (dimethylaminomethyl) phenol (DEH 35) as catalyzer, at 100/87/5 as fixed concentration was successfully processed. Aiming workable thermoset, thermoplastic Polycaprolactone (PCL) was added at 10, 20 and 30 phr contents to the epoxy compound. Analyses of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and optical microscopy (OM) were conducted in order to obtain evidences from chemical interactions, curing kinetics and phase separation. From FTIR spectra partially miscibility between Epoxy and PCL can be assumed, mainly due to the hydrogen bonding between PCL carbonyl and epoxy hydroxyl, whereas after reaching epoxy's solubility limit PCL segregates and it is suggested separated phases take place through spinodal decomposition (Kinloch et al., 1994) [1] and nucleation and growth (NG) mechanisms which depend on temperature and raw material concentrations, as illustrated in OM images. Curing kinetics followed through released heat during DSC scans, indicated decreased crosslinking density upon PCL addition, as also lower Tg related to neat epoxy. Overcoming epoxy brittle fracture, rough surface fracture images with toughening character were captured from epoxy/PCL. Evidences of workable epoxy/PCL compounds are provided and related results presented in this work offer reliable tools to determine the exact aimed degree of crosslinking widening processing window to desired application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号