首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We have studied by means of periodic DFT calculations the structure and properties of point defects at the surface of ultrathin silica films epitaxially grown on Mo(112) and their interaction with adsorbed Au atoms. For comparison, the same defects have been generated on an unsupported silica film with the same structure. Four defects have been considered: nonbridging oxygen (NBO, [triple bond]Si-O(*)), Si dangling bond (E' center, [triple bond]Si(*)), oxygen vacancy (V(O), [triple bond]Si-Si[triple bond]), and peroxo group ([triple bond]Si-O-O-Si[triple bond]), but only the NBO and the V(O) centers are likely to form on the SiO(2)/Mo(112) films under normal experimental conditions. The [triple bond]Si-O(*) center captures one electron from Mo forming a silanolate group, [triple bond]Si-O(-), sign of a direct interaction with the metal substrate. Apart from the peroxo group, which is unreactive, the other defects bind strongly the Au atom forming stable surface complexes, but their behavior may differ from that of the same centers generated on an unsupported silica film. This is true in particular for the two most likely defects considered, the nonbridging oxygen, [triple bond]Si-O(*), and the oxygen vacancy, [triple bond]Si-Si[triple bond].  相似文献   

2.
Composite material for medical application on the basis of polydimethylsiloxane rubber (PDMS) and graphite was obtained. The physico-chemical and mechanical properties of the material depending on the quantity, purity of the modifier and its preliminary treatment were studied. The established physico-chemical properties of the material surface allow to make the preliminary prediction of its thromboresistance.  相似文献   

3.
Thrombus formation and blood coagulation is a major problem associated with blood contacting products such as catheters, vascular grafts, arteries, artificial hearts and heart valves. An intense research is being conducted towards the synthesis of new hemocompatible materials and modifications of surfaces with biological molecules. In this study, polyurethane (PU) films were synthesized in medical purity from diisocyanate and polyol without using any other ingredients and their surfaces were modified by covalent immobilization of heparin. Two types of heparin, unfractionated (UFH) and low molecular weight heparin (LMWH), were immobilized to investigate their effect on cell adhesion. The surface properties of the modified PUs were examined with ESCA, ATR-FTIR and AFM. ESCA results demonstrated sulfur peaks indicating the presence of heparin and AFM results showed the alteration of surface structure after coating with heparin. Cell adhesion studies were conducted with heparinized whole human blood. The surfaces of the UFH immobilized films resulted in lesser red blood cell adhesion in comparison to LMWH demonstrating strong anti-thrombogenic activity of the latter.  相似文献   

4.
This paper describes the preparation and Langmuir-Blodgett (LB) monomolecular film formation of H_2, Cu, Ni, Co, and Zn phthaloeyanine compounds with p-vinyiphenoxy peripheral substituent on each benzo ring at either 2- or 3- position [i.e., tetra (p-vinylphenoxy) substituted isomer mixture]. These phthalocyanine derivatives form stable LB films at the film pressures greater than 10 dynes/cm. The surface pressure-area isotherms indicate that the phthalocyanine units are densely packed with a eofacial orientation. Schottky cells of [Indium-Tin Oxide/LB film/Al] were prepared and their electronic properties were examined. Much better rectifying properties, diode parameter, break-down potential and mechanical strength were notified by the post-polymerization of LB-layers. On exposing the polymerized films to tetrahydrofuran vapor, the absorption maxima of Q-band shift bathochromically by about 100 nm, being sensitive to diode laser light.  相似文献   

5.
The synthesis of Bisacid A2 in a state of high purity, the preparation of Bisacid A2 copolyesters and the determination of the properties of the resins and their crosslinked derivatives, with and without glass fibre reinforcement, were the subject of earlier publications [1–8]. This paper describes methods for determining structural details in the crosslinked resins which are then related to their properties.  相似文献   

6.
Previously, we have investigated the formation of polymer films from heptane on the surface of a metal substrate in low-temperature plasma (LTP) by varying the mode and time of plasma treatment [1–3]. It was found that the formation of the films occurs in three stages, each being characterized by certain topography, chemical structure, and mechanical properties of the films. In the first stage, continuous films are formed that mimic the substrate topography, smoothing it. The films are homogeneous in their chemical structure, have a low hardness, high permeability, and hydrophilicity. In the second stage, the films grow via the formation of isolated macromolecular entities, “islets.” At the end of the second step, the entire surface of the films is covered by the islets, and the films have a maximum hardness, low permeability, and hydrophobicity. In the third stage, the polymer chains undergo degradation accompanied by the intense etching of the film, which manifest itself in a reduction of its thickness, smoothing of the topography, enhancement of permeability, and surface hydrophilicity. In this study, we examined the effect of the chain length of saturated hydrocarbon molecules on the chemical structure and morphology of the polymer films formed in low-temperature plasma.  相似文献   

7.
The application of surface‐attached, thiol‐ene polymer films for controlling material properties in a gradient fashion across a surface was investigated. Thiol‐ene films were attached to the surface by first depositing a thiol‐terminated self‐assembled monolayer and performing a thiol‐ene photopolymerization reaction on the surface. Property gradients were created either by creating and modifying a gradient in the surface thiol density in the SAM or by changing the polymerization conditions or both. Film thickness was modified across the substrate by changing either the density of the anchoring thiol functional groups or by changing the reaction conditions such as exposure time. Thicker films (1–11 nm) were obtained by polymerizing acrylate polymer brushes from the surface with varying exposure time (0–60 s). The two factors, that is, the surface thiol density and the exposure time, were combined in orthogonal directions to obtain thiol‐ene films with a two‐dimensional thickness gradient with the maximum thickness being 4 nm. Finally, a thiol‐acrylate Michael type addition reaction was used to modify the surface thiol density gradient with the cell‐adhesive ligand, Arg‐Gly‐Asp‐Ser (RGDS), which subsequently yielded a gradient in osteoblast density on the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7027–7039, 2006  相似文献   

8.
There is an increasing interest for the utilization of biomolecules for fabricating novel nanostructures due to their ability for specific molecular recognition, biocompatibility, and ease of availability. Among these molecules, diphenylalanine (Phe-Phe) dipeptide is considered as one of the simplest molecules that can generate a family of self-assembly based nanostructures. The properties of the substrate surface, on which the self-assembly process of these peptides occurs, play a critical role. Herein, we demonstrated the influence of surface texture and functionality on the self-assembly of Phe-Phe dipeptides using smooth silicon surfaces, anodized aluminum oxide (AAO) membranes, and poly(chloro-p-xylylene) (PPX) films having columnar and helical morphologies. We found that helical PPX films, AAO, and silicon surfaces induce similar self-assembly processes and the surface hydrophobicity has a direct influence for the final dipeptide structure whether being in an aggregated tubular form or creating a thin film that covers the substrate surface. Moreover, the dye staining data indicates that the surface charge properties and hence the mechanism of the self-assembly process are different for tubular structures as opposed to the peptidic film. We believe that our results may contribute to the control of surface-induced self-assembly of peptide molecules and this control can potentially allow the fabrication of novel peptide based materials with desired morphologies and unique functionalities for different technological applications.  相似文献   

9.
Rheological properties of moderately concentrated aqueous solutions of blends of methyl cellulose and carboxymethyl cellulose with Poviargol antiseptic (nanodispersed silver stabilized with polyvinylpyrrolidone) were studied. Composite films were prepared from solutions of the polymer blends, and the physicomechanical and thermomechanical properties of the films were examined. The region of thermodynamic compatibility of cellulose ethers with Poviargol was determined by the method based on sorption of solvent vapor.  相似文献   

10.
Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface.  相似文献   

11.
The results of long-term researches of thin films prepared from tetraethoxysilane-derived sols containing inorganic and organic additives are systematized and analyzed. These additives give to films certain physicochemical properties for their application in electronic techniques, optics, power engineering, in biological technologies etc. The influence both inorganic (salts, acids) and organic (polyols, polyionenes, epoxy resin) additives on rheological properties and aggregate stability of sols as well as films surface morphology is minutely considered. The explanations of phenomena during film formation, including spin-coating process, are given. Essential influence of temperature and humidity on films surface morphology is shown. Influence of heat treatment modes on structure and composition of films is analyzed. Recommendations about optimization of thin films sol–gel processing are offered.  相似文献   

12.
Three thiols with three aromatic rings and different structure – terphenyl-4-methanethiol (TPMT), terphenyl-4-thiol (TPT), and anthracene-2-thiol (AT) – have been used to form self-assembled monolayers (SAM) on vapour-deposited and flame-annealed Au films on glass substrates. All three SAMs effectively block the anodic formation of Au oxide, indicating densely packed layers which prevent the access of water and hydrated ions through the organic layer to the metal surface. The film improves its inhibiting properties with duration of exposure to the thiol solutions, reaching completion after 1 hour [1]. The charge-transfer reaction of the Fe(CN)6 3–/Fe(CN)6 4– system is blocked for TPMT films with an insulation of the π-electron system from the Au surface by the methylene group. TPT and especially AT films show the current density of the redox reactions. It is proposed that the charge transfer occurs via the aromatic molecules of the SAMs to the Au surface. Electronic Publication  相似文献   

13.
We report on a facile method for fabricating thermosensitive organic/inorganic hybrid hydrogel thin films from a cross-linkable organic/inorganic hydrid copolymer, poly[ N-isopropylacrylamide- co-3-(trimethoxysilyl)propylmethacrylate] [P(NIPAm- co-TMSPMA)]. Fourier transform infrared (FT-IR) spectra confirmed the formation of hybrid hydrogel thin films after hydrolysis of the methoxysilyl groups (Si-O-CH 3) and subsequent condensation of the silanol groups (Si-OH). Atomic force microscopy (AFM) images revealed that the surface morphology of the hydrogel thin films depended on the supporting substrates. Microdomains were observed for the hydrogel thin films on a gold surface, which can be attributed to inhomogeneous network structures. The thermoresponsive swelling-deswelling behavior and the viscoelastic properties of the hydrogel thin films were investigated as a function of temperature (25-45 degrees C) by using a quartz crystal microbalance (QCM) operated in water. The high frequency shear modulus of the P(NIPAm- co-TMPSMA) hydrogel thin films was several hundred kilopascals.  相似文献   

14.
Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.  相似文献   

15.
Submonolayer thin films of a three-ring bent-core (or banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were vacuum-deposited on a mica surface, and a spontaneous transition from monolayer films to bilayer crystals was observed at room temperature, which was ascribed to the specific molecular shape and polar layered packing of the bent-core molecules [Tang et al. J. Phys. Chem. B 2004, 108 (34), 12921-12926]. The crystal nucleation and growth from the monolayer films as well as the melting phase transition from the bilayer crystals were investigated using atomic force microscopy (AFM). It was shown that after initial nucleation, the crystal growth was achieved through three pathways: direct absorption of molecules from monolayer films, molecular cluster diffusion, and quasi-Ostwald ripening. When annealing the bilayer crystals at elevated temperatures, morphological change from a bilayer to a monolayer was observed, and some new islands with fingerlike patterns were formed during this process, which resulted from a diffusion-controlled growth of the molten molecules. In general, the high-resolution AFM in combination with the molecularly thin m-OSB films provided us with direct visualization of nucleation, crystal growth, melting, and film morphology evolution on the mesoscopic scale, which are of fundamental interest from the theoretical viewpoint and are of central importance for the control of interfacial properties in practical applications.  相似文献   

16.
IntroductionZnOis one of the most promising materials for pro-ducing ultraviolet laser at room temperature because ofits wide direct band gap(Eg=3.37eV)and large ex-citonic binding energy of60meV.Recently,much at-tention has been paid to short-wavelength …  相似文献   

17.
Hemocompatibility is an essential aspect of blood contacting polymers. Knowledge of the relationship between polymer structure and hemocompatibility is important in designing such polymers. In this work, the effect of swelling behavior and states of water on the hemocompatibility of poly(acrylonitrile-co-N-vinyl-2-pyrrolidone) (PANCNVP) films was studied. Platelet adhesion and plasma recalcification time tests were used to evaluate the hemocompatibility of the films. Considering the importance of surface properties on the hemocompatibility of polymers, static water contact angles were measured by both sessile drop and captive bubble methods. It was found that, on the film surface of PANCNVP with a higher NVP content, adhered platelets were remarkably suppressed and the recalcification time was longer. The total water content adsorbed on the PANCNVP film was determined through swelling experiments performed at temperatures of interest. Differential scanning calorimetry and thermogravimetric analysis were used to probe the states of water in the films. Based on the results from these experiments, it was hypothesized that the better hemocompatibility of PANCNVP films with higher NVP contents was due to their higher free water content, because water molecule exchange at the polymer/liquid interface, facilitated by a high free water content, is unfavorable for the formation of surface bound water, which causes poor hemocompatibility. [diagram in text].  相似文献   

18.
Silk fibroin from Bombyx mori is a high-molecular-weight protein, largely employed in the biomaterials field. Several parameters can affect the folding and assembly of fibroin heavy and light chains. The present work has shown that anisotropic and water-stable films are produced when fibroin solution is cast under an alternating electric field (AC). The treatment can affect the mechanical, thermal and surface properties of fibroin films. These effects have been related to the alignment of molecular dipoles and the formation of oriented supramolecular assemblies. Cell response is affected by this novel processing: MRC5 fibroblasts, cultured on anisotropic fibroin films, preferentially spread parallel to the field direction 6 h after seeding. [Figure: see text].  相似文献   

19.
By the interfacial condensation of acid chlorides I, II, and III, respectively, with bifunctional phenols (IV-X), soluble or mold-able thermostable polyarylates were obtained. Similarly, copolyarylates were prepared from a mixture of the acid chlorides I + II or I + III. With bisphenol-A (VIII), soluble polymers are usually obtained. Methylene dichloride and/or carbon tetra-chloride-water systems were the best media for interfacial condensations, and the polymers formed showed the highest reduced viscosity values.

Polyester films are useful in many industrial applications because of their broad range of mechanical, optical, and electrical properties. The aromatic polyesters‐polyarylates-dominate the field of industrial polyester films [1].

Polyarylates prepared from dihydric phenols and purely aromatic dicarboxylic acid chlorides are highly heat resistant materials [2], but they are insoluble and nonmoldable [3]. However, by the introduction of ether linkages in the aromatic dicarboxylic acid moiety, soluble and/or moldable polyamides were obtained [4].  相似文献   

20.
The spectroscopic properties and surface-enhanced spectra of Langmuir-Blodgett (LB) films of methacrylic homopolymer (HPDR13) are presented. It is shown that LB film displays strong fluorescence attributed to the spatial restrictions imposed by its structure. The emission is observed in conjunction with photoisomerization, a process clearly demonstrated by the formation of surface-relief gratings in the LB film [C.R. Mendon?a et al., Macromolecules 32 (1999) 1493]. Surface-enhanced Raman scattering (SERS), Surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF) were observed for LB films of HPDR13 deposited onto silver island films. SERS measurements were also carried out on a sample fabricated with one monolayer LB film deposited onto silver islands followed by one overlayer of silver (LB sandwiched between two layers of silver islands). The polymer interacts very weakly with the metal surface (physisorption), and the enhancement effect is determined by the local electric field enhancement. The strong SERS and SERRS signals were suitable for micro-Raman imaging. Line, area mapping and global images of the LB monolayer on silver island are reported. The transfer ratio in the fabrication of the LB suggests a homogeneous coating of the silver islands, thereby the chemical images show the variation of the SERS intensity due to surface enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号