首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dehydration of methanol into dimethyl ether (DME) was carried out over aluminum oxides with different crystalline phases, viz. η-Al2O3, γ-Al2O3, θ-Al2O3, (χ + γ)-Al2O3, δ-Al2O3, α-Al2O3, and κ-Al2O3. The catalytic activity decreased in the following order: η-Al2O3 > γ-Al2O3 ? θ-Al2O3 ? (χ + γ)-Al2O3 ? δ-Al2O3 > α-Al2O3 ≈ κ-Al2O3. Several techniques: N2 physisorption, X-ray diffraction (XRD), temperature-programmed desorption (TPD) of NH3, and FT-IR spectroscopy after pyridine adsorption were employed to characterize these solid acid catalysts. The good correlation can be found between the catalytic activity and the amount of Lewis acid site determined by the FT-IR spectra after pyridine adsorption.  相似文献   

2.
Differential thermal analysis (DTA) technique was used to determine the glass transition temperatures of polymethyl methacrylate (PMMA). When PMMA was adsorbed on α-alumina, DTA could not use to obtain the glass transition temperatures of the system PMMA/α-Al2O3. Inverse gas chromatography at infinite dilution proved to be an excellent technique to highlight glass transitions and local transitions of PMMA adsorbed on α-Al2O3, at various covered surface fractions.  相似文献   

3.
This study deals with the changes in the thermal transformation behaviour of boehmite with mechanical activation (MA), carried out in planetary mill. Observed changes in the TG-DTG–DTA curves are: shifting of the desorption of physically adsorbed water to higher temperature, decrease in the γ-Al2O3 transformation temperature and its peak area, formation of α-Al2O3, not observed for unmilled boehmite upto 1,200 °C, for milling time ≥60 min. Reasons for such changes are explored on the basis of physicochemical changes occurring as a result of high energy milling. Structural degradation is found to increase with increase in milling time. As a consequence of structural changes, Al–OH bonds get stronger, whereas the hydrogen bonds get weaker. Stronger Al–OH bonding and enhanced surface energy increase water affinity and delays its removal. Decreased hydrogen bond strength, easy exit of dehydroxylation product (water) and displacement of Al to tetrahedral positions make the γ-Al2O3 transformation easier. Ease of removal of residual hydroxyls from small crystallite transition alumina from MA boehmite, as a result of shorter diffusion path, ensures α-Al2O3 transformation at lower temperature.  相似文献   

4.
The formation of Pd–Ag nanoparticles deposited from the heterobimetallic acetate complex PdAg2(OAc)4(HOAc)4 on α-Al2O3, γ-Al2O3, and MgAl2O4 has been investigated by high-resolution trans-mission electron microscopy, temperature-programmed reduction, and IR spectroscopy of adsorbed CO. The reduction of PdAg2(OAc)4(HOAc)4 supported on γ-Al2O3 and MgAl2O4 takes place in two steps (at 15–245 and 290–550°C) and yields Pd–Ag particles whose average size is 6–7 nm. The reduction of the Pd–Ag catalyst supported on α-Al2O3 occurs in a much narrower temperature range (15–200°C) and yields larger nanoparticles (~10–20 nm). The formation of Pd–Ag alloy nanoparticles in all of the samples is demonstrated by IR spectroscopy of adsorbed CO, which indicates a marked weakening of the absorption band of the bridged form of adsorbed carbon monoxide and a >30-cm–1 bathochromic shift of the linear adsorbed CO band. IR spectroscopic data for PdAg2/α-Al2O3 suggest that Pd in this sample occurs as isolated atoms on the surface of bimetallic nanoparticles, as is indicated by the almost complete absence of bridged adsorbed CO bands and by a significant weakening of the Pd–CO bond relative to the same bond in the bimetallic samples based on γ-Al2O3 and MgAl2O4 and in the monometallic reference sample Pd/γ-Al2O3.  相似文献   

5.
The influence of solution pH on the structure of polyvinyl alcohol adsorption layer on the alumina surface was investigated. The spectrophotometry, viscosimetry, thermogravimetry, potentiometric titration and microelectrophoresis were applied in experiments. These methods enable determination of the following parameters: adsorbed amount of PVA, stability of suspension without and with polymer, thickness of its adsorption layers, changes in thermal characteristics of Al2O3 surface with the adsorbed polymer, surface charge density and zeta potential of solid particles in the presence and absence of PVA, respectively. All measurements were carried out in the pH range 3–9. The obtained results indicate that pH has a great influence on the conformation of PVA chains adsorbed on the alumina surface. It is due to incomplete hydrolysis of acetate groups of polyvinyl alcohol macromolecules (degree of hydrolysis 97.5%), which dissociate with the increasing pH. Moreover, the polymer adsorption on the alumina surface causes changes in the course of thermogravimetric curves. The effect of weight loss for Al2O3–PVA systems is smaller than that of Al2O3 without polymer. It is due to elimination of water molecules from the solid surface by adsorbed polymer.  相似文献   

6.
The solid state transitions of the WO3γ-Al2O3 system have been investigated in the temperature range 873–1323 K. The formation of α-Al2O3 and Al2(WO4)3 phases and the thermal desorption of W(VI) attached to the γ-Al2O3 surface have been studied as function of the treatment time. The inhibition of the phase transition to α-Al2O3 and therefore the stabilization of the surface has been observed at 1323 K for samples with 7% WO3 content. This stabilization is critically affected by the tungsten content. An explanation for the stabilization of the alumina surface is proposed.  相似文献   

7.
Regularities of the adsorption of ethylhydroxyethylcellulose (EHEC) hydrophilic polymer on a surface of inorganic pigments of TiO2 and Fe2O3 were investigated by infrared spectroscopy. It was found that the adsorption interaction between EHEC and a surface of oxides is accompanied by conformation transformations of the adsorbed molecules of EHEC. The means by which macromolecules bind with active centers on a surface of metal oxides and the influence of the oxides’ nature on the EHEC macromolecule conformation transformations determining the structure of the adsorption layer upon adsorption were established.  相似文献   

8.
The effect of solution pH and molecular weight of polyacrylic acid (PAA) on its adsorption as well as on stabilization-floculation properties of the colloidal Al2O3 and electrolyte solution systems was studied. The measurements showed that at pH = 6, the presence of the polymer of molecular weight 2?000 and 240?000 does not change stability of Al2O3 suspension. However at pH =3 and 9 the effect of polyacrylic acid is significant. At pH = 3 it creates destabilization of the suspension while at pH = 9 PAA it improves significantly the stability of Al2O3. It was shown that the increase in solution pH affects conformation of adsorbed macromolecules which causes the decrease in PAA adsorbed amount and thickness of polymer adsorption layer. By comparing the values of diffusion layer and surface charges, main effects responsible for the decrease in surface charge and ζ potential of the solid in the presence of the polymer as well as suspension stability were determined.  相似文献   

9.
Isotherms of tetrachloromethane vapor adsorption/desorption on porous -Al2O3 samples, which are prepared by the thermal decomposition of bayerite precipitated in the presence of several hydroxybenzenes, are measured. Using Nechaev's hypothesis that only hydroxybenzene molecules with strictly specified ionization potential are adsorbed from aqueous solutions on the oxide surface, it is demonstrated that the templated precipitation of -Al2O3 leads to changes in the shapes of adsorption isotherms and hysteresis loops resulted from the fundamental changes in the pore shape of the forming adsorbents.  相似文献   

10.
In this paper the adsorption of polyacrylic acid (MW=5000) on the hydrophobic mercury surface and on the hydrophilic -Al2O3 surface at pH=3–4 in 0.55 M sodium chloride solution was investigated. Measurements of change of the double layer capacitance by phase selective a.c. voltammetry were used for determination of the adsorption of polyacrylic acid on the mercury electrode. The same method was used for the determination of the polyacrylic acid remaining in the solution after the adsorption on hydrophilic particles (-Al2O3 particles). The results obtained for adsorption of polyacrylic acid were compared to the results of the adsorption of humic substance of similar molecular weight under similar experimental conditions. The study has shown that polyacrylic acid in acidic solution is strongly adsorbed on the mercury surface, which is comparable to the adsorption of humic substance on the mercury surface. At the same time, the adsorption/deposition of polyacrylic acid on the -Al2O3 surface is weaker compared to humic acid, indicating at a smaller degree of interaction of polyacrylic acid with aluminium ions and with hydrophilic surface.  相似文献   

11.
The interaction of selenate, selenite, and chromate with the hydrated surface of γ-Al2O3 was studied using a combination of macroscopic pH edge data, electrophoretic mobility measurements, and X-ray absorption spectroscopic analyses. The pH edge data show generally increased oxyanion adsorption with decreasing pH, and indicate ionic strength-(in)dependent adsorption of chromate and selenate across the pH range 4–9, and ionic strength-(in)dependent adsorption of selenite in this pH range. The adsorption of chromate peaks at pH 5.0, whereas for selenate and selenite no pH adsorption maxima are observed. Electrophoretic mobility measurements show that all three oxyanions decrease the zeta potential of γ-Al2O3 upon adsorption; however, only selenite decreased the pHPZC of the γ-Al2O3 sorbent. EXAFS data indicate that selenite ions are coordinated in a bridging bidentate fashion to surface AlO6 octahedra, whereas no second-neighbor Al scattering was observed for adsorbed selenate ions. Combined, the results presented here show that pH is a major factor in determining the extent of adsorption of selenate, selenite, and chromate on hydrated γ-Al2O3. The results point to substantial differences between these anions as to the mode of adsorption at the hydrated γ-Al2O3 surface, with selenate adsorbing as nonprotonated outer-sphere complexes, chromate forming a mixture of monoprotonated and nonprotonated outer-sphere adsorption complexes, and selenite coordinating as inner-sphere surface complexes in bridging configuration.  相似文献   

12.
The synthesis of catalytic filamentous carbon (CFC) on catalysts prepared by supporting Ni2+ compounds onto the surface of various alumina modifications (macroporous α-Al2O3 and mesoporous ?-Al2O3 and δ-Al2O3) using two procedures (impregnation and homogeneous precipitation) was studied. The texture characteristics (specific surface area and pore structure) of the parent supports and adsorbents with a CFC layer were compared. The effect of the supporting procedure on the surface morphology of Ni/Al2O3 catalysts and the synthesized CFC layer was studied by scanning electron microscopy. It was found that the carbon yield on a macroporous catalyst prepared by homogeneous precipitation was higher than that on a catalyst prepared by impregnation by a factor of ~2. The CFC layer exhibited a mesoporous structure because of a chaotic interlacing of carbon nanofibers, and the synthesis of CFC on macroporous supports resulted in the formation of a bidisperse pore structure of the adsorbent. Active and stable heterogeneous biocatalysts were prepared by the adsorptive immobilization of enzymatically active substances (glucoamylase and nongrowing baker’s yeast cells) on CFC.  相似文献   

13.
In order to clarify the end-functionalization effect of polymers modified by iminium ion, a model compound with a modified chain end was prepared by directly reactingn-butyllithium withN-methyl-2-pyrrolidone and then quenching by the addition of methanol. It is shown that the model compound includes the iminium ion group and that the adsorption bands in the IR-spectra of the chemically modified polymer were similar to those of model compoundThe adsorption behavior of end-functionalized polystyrene(PS-X) and diblock copolymer of PS and polybutadiene(PB) which were modified by iminium ion(PS-PB-X), were examined over a wide range of molecular weights of these polymers. It is evident that the amount of adsorption increased significantly by the end-functionalization and this trend was especially strong in the low molecular weight polymers (M w<-105). The preference for the end-functionalized polymer was also examined by competitive and sequential adsorption experiments between different molecular weight species. It is shown that a prefered adsorption of PS-X with low molecular mass is pronouced over the adsorption of PS or PS-X with high molecular weight and in the combination of high and low molecular weight species of PS-X, a special enhancement of total adsorption can be observed. This enhancement is based on a combination of different adsorption layers formed by these two molecular weight species.  相似文献   

14.
The effect of temperature on the adsorption/desorption of ammonia from the air mixture on the surface of γ-Al2O3, TiO2 (anatase) and alumina-supported vanadia catalyst samples has been investigated using temperature-programmed desorption (TPD). When the vanadia loading was increased, the fraction of the acid sites providing the NH3 adsorption in the high-temperature state decreased. At the same time, the fraction of the medium temperature state significantly increased.  相似文献   

15.
Nitrogen adsorption isotherm measured at ?196 °C for a macroporous α-alumina (α-Al2O3) is reported. This isotherm is compared with the previously reported adsorption data measured on LiChrospher 1000 silica and with available reference isotherms measured at moderate and high relative pressures on macroporous aluminas. The isotherm reported in this work for α-Al2O3 and that recorded previously on LiChrospher 1000 silica were used as reference data for adsorption characterization of ordered and disordered mesoporous aluminas by α s -plot analysis and pore size analysis. It is shown that both reference isotherms provide almost identical adsorption characteristics of the aforementioned mesoporous aluminas, indicating that the available reference data for the silica surface are also suitable for adsorption analysis of alumina-based materials.  相似文献   

16.
It is of great significance to study the thermal oxidation process to understand the reaction mechanism of aluminum particle and further its applications in propellants. The physical and chemical properties of micron-aluminum particle were evaluated by scanning electron microscopy, laser particle size analyzer, X-ray diffractometer and inductively coupled plasma atomic emission spectrometer. The thermal oxidation characteristics of the sample were studied by thermal analyzer. The experimental results showed that the initial oxide thickness of the sample was about 3.96 nm, and the calculated values of the specific surface area and the active aluminum content obtained by the established mathematical model were in good agreement with the measured values. The thermal oxidation process of the sample was divided into three stages. When the temperature rose to 1100 °C, the thermal oxidation efficiency of the sample reached 98.55%. With the increase in treatment temperature, dramatic crystalline changes occurred on the surface of the sample: amorphous alumina—γ-Al2O3, α-Al2O3, and the oxide layer thickness increased from 3.96 to 5.72 nm and 31.56 nm up to 320.15 nm. When the temperature reached 700 °C, the outer surface of the oxide layer contained a small amount of α-Al2O3, while the interior consisted of a large amount of γ-Al2O3, indicating that the conversion of γ-Al2O3 to α-Al2O3 occurred from the inside out.  相似文献   

17.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法, 对Pt原子与γ-Al2O3(001)面的相互作用及迁移性能进行了研究. 分析了各种可能吸附位及吸附构型的松弛和变形现象, 吸附能和迁移能垒的计算结果表明: Pt团簇能够稳定吸附在该表面. Pt原子在表面O位的吸附能明显较高, 这主要是由Pt向基底O原子转移了电子所致. 电荷布居分析表明, Pt原子显电正性, Pt和Al原子之间存在排斥作用, 导致与Al原子产生较弱相互作用. 计算的平均吸附能大小依赖于Pt团簇的大小和形状, 总体趋势是随着Pt原子数增多, 吸附能降低. Pt原子在γ-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV. 随着吸附的Pt原子数增多,更倾向于形成Pt团簇. 因此, Pt原子在γ-Al2O3(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型, 而在一定条件下容易出现团聚.  相似文献   

18.
We investigate the synthesis of ammonia in a non-equilibrium atmospheric-pressure plasma using functionalized-nanodiamond and diamond-like-carbon coatings on α-Al2O3 spheres as catalysts. Oxygenated nanodiamonds were found to increase the production yield of ammonia, while hydrogenated nanodiamonds decreased the yield. Neither type of nanodiamond affected the plasma properties significantly. Using diffuse-reflectance FT-IR and XPS, the role of different functional groups on the catalyst surface was investigated. Evidence is presented that the carbonyl group is associated with an efficient surface adsorption and desorption of hydrogen in ammonia synthesis on the surface of the nanodiamonds, and an increased production of ammonia. Conformal diamond-like-carbon coatings, deposited by plasma-enhanced chemical vapour deposition, led to a plasma with a higher electron density, and increased the production of ammonia.  相似文献   

19.
Recent IR spectroscopic studies on the surface properties of fresh Mo2N/-Al2O3 catalyst are presented in this paper. The surface sites of fresh Mo2N/-Al2O3, both Mo+ (0<<2) and N sites, are probed by CO adsorption. Two characteristic IR bands were observed at 2045 and 2200 cm-1, due to linearly adsorbed CO on Mo and N sites, respectively. The surface N sites are highly reactive and can react with adsorbed CO to form NCO species. Unlike adsorbed CO on reduced passivated one, the adsorbed CO on fresh Mo2N/-Al2O3 behaves similarly to that of group VIII metals, suggesting that fresh nitride resembles noble metals. It is found that the surface of Mo nitrides slowly transformed into sulfide under hydrotreating conditions, which could be the main reason for the activity drop of molybdenum nitride catalysts in the presence of sulfur-containing species. Some surface reactions, such as selective hydrogenation of 1,3-butadiene, isomerization of 1-butene, and hydrodesulfurization of thiophene, were studied on both fresh and reduced passivated Mo2N/-Al2O3 catalysts using IR spectroscopy. The mechanisms of these reactions are proposed. The adsorption and reaction behaviors of these molecules on fresh molybdenum nitride also resemble those on noble metals, manifesting the unique properties of fresh molybdenum nitride catalysts. Mo and N sites are found to play different roles in the adsorption and catalytic reactions on the fresh Mo2N/-Al2O3 catalyst. Generally, Mo sites are the main active sites for the adsorption and reactions of adsorbates; N sites are not directly involved in catalytic reactions but they modify the electronic properties of Mo sites.  相似文献   

20.
Summary One of the most important parameters which decide the peaks resolution in HPLC with the nonmodified adsorbents, is the amount of water which is present on the adsorbent surface. This article tries to show that the change in the adsorption properties of -Al2O3 is dependent on the amount of adsorbed water. These changes are shown with the help of adsorption isotherms, isosteric heats of adsorption and adsorption energy distributions. The data is analysed on the bases of Jovanovic equations. It was also found that a relationship exists between the Brockman activity scale and the adsorption isotherm of water on -Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号