首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article discusses the diffusion and solubility behavior of methanol/methyl tert‐butyl ether (MTBE) in glassy 6FDA–ODA polyimide prepared from hexafluoroisopropylidene 2,2‐bis(phthalic anhydride) (6FDA) and oxydianiline (ODA). The diffusion coefficients and sorption isotherm of methanol vapor in 6FDA–ODA polyimide at various pressures and film thicknesses were obtained with a McBain‐type vapor sorption apparatus. Methanol/MTBE mixed‐liquid sorption isotherms were obtained by head‐space chromatography and compared with a pure methanol sorption isotherm obtained with a quartz spring balance. Methanol sorption isotherms obtained with the two methods were almost identical. Both methanol sorption isotherms obeyed the dual‐mode model at a lower activity, which is typical for glassy polymer behavior. The MTBE was readily sorbed into the polymer in the presence of methanol, but the MTBE sorption isotherm exhibited a highly nonideal behavior. The MTBE sorption levels were a strong function of the methanol sorption level. Methanol diffusion in the polymer was analyzed in terms of the partial immobilization model with model parameters obtained from average diffusion coefficients and the dual‐mode sorption parameters. Simple average diffusion coefficients were obtained from sorption kinetics experiments, whereas the dual‐mode sorption parameters were obtained from equilibrium methanol sorption experiments. An analysis of the mobility and solubility data for methanol indicated that methanol tends to form clusters at higher sorption levels. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2254–2267, 2000  相似文献   

2.
Sorption and transport properties of water through films of Nylon-6 were obtained at 5, 23, and 40°C. Commercially available films were used and a Cahn electrobalance was employed for measuring the water uptake by the polymer samples. Values of the water sorption isotherms are accurately described by the Langmuir/Flory-Huggins dual-mode sorption model. At water activity values below 0.15, the volume fraction of water described by the Langmuir portion of the model was greater than the Flory-Huggins population. Solubility and diffusion coefficients of water, as well as the diffusion activation energy and enthalpy of dissolution of water for Nylon-6, were determined from the sorption experiments. Values obtained support the hypothesis of a bimodal water sorption mode, and the formation of water clusters. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Poly(ethylene terephthalate) (PET) is nowadays the packaging material of choice for beverages. Therefore knowledge about the diffusion coefficients at a certain temperature or activation energies of diffusion of potential migrants in the polymer is of interest, especially for the definition of the basic parameter set for migration modelling of PET. In this study, the diffusion coefficients of acetaldehyde, benzene and tetrahydrofuran in PET bottle materials were determined from kinetic migration experiments at four different temperatures. The activation energies for tetrahydrofuran and benzene were determined to be 106.8 kJ mol−1 and 101.4 kJ mol−1, respectively. The activation energy for acetaldehyde is significantly lower (75.7 kJ mol−1) which is due to the lower molecular weight of this molecule compared to benzene and tetrahydrofuran. The results were compared with literature data of diffusion coefficients of other low molecular weight molecules in PET. From the results it is evident that the current migration model with the default modelling parameters for PET does not describe realistically the diffusion coefficients in PET. The migration of small molecules like acetaldehyde will be underestimated whereas higher molecular weight compounds will be overestimated by the current migration model. Whereas the overestimation is useful for compliance evaluation of PET bottles, for more realistic migration calculations, e.g. for exposure estimations, such overestimation is not desirable. Therefore, more accurate modelling parameters should be established. The key parameters for more realistic migration modelling are the activation energies of diffusion in the polymer.  相似文献   

4.
In this study, diffusion coefficients of toluene/methyl ethyl ketone (MEK) mixtures in polyisobutylene were measured at 50°C using vapor sorption FTIR-ATR (Fourier Transform Infrared Attenuated Total Reflectance) spectroscopy. For three mixture compositions, the diffusion coefficients were determined using a diffusion framework for ternary systems. The “crossterm” diffusion coefficient for MEK was found to be very small under the experimental conditions studied here, while that for toluene was found to increase with increasing MEK concentration. On the basis of this finding, a binary diffusion model was used to determine diffusion coefficients for MEK over a wide range of mixture compositions and the results compared well with those determined from pure MEK transport data. Relative transport rates during integral sorption experiments with mixtures were used to explain the results. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 337–344, 1998  相似文献   

5.
Sorption isotherms of 2,4-dinitroaniline and three 4-amino-azobenzene derivatives (nonionic dyes with adequate solubility in water) on Nylon 6 (film and fiber) from water were determined at various temperatures. The observed isotherms were curved, not linear. They were very well described in terms of the dual-mode sorption model, Nernst-type partitioning, plus Langmuir sorption. The contribution of the Langmuir sorption to the total dye sorption decreased with increasing temperature. The saturation value for the Langmuir sorption increased with the crystallinity of Nylon 6 film, suggesting that the Langmuir sorption is associated with the crystalline phase.  相似文献   

6.
The diffusion of water into PET containing a comonomer has been followed in-situ using FT-IR ATR. Varying degrees of crystallinity were induced into the polymer by annealing at 85°C (above the glass transition temperature). The diffusion coefficients were calculated by a least squares fit of the experimental diffusion data to theoretical sorption curves and are found to decrease with increased crystallinity. Some evidence for a crystalline ‘skin’ is discussed.  相似文献   

7.
Typically, materials with high-performance transport properties such as zeolites, carbon molecular sieves, or hyper rigid polymers are inherently difficult or impossible to characterize by steady-state membrane permeation experiments used for conventional polymers. Diffusion coefficients determined by transient sorption, a measurement easily performed on brittle media, are analyzed here and compared to those determined by steady-state permeation/sorption and transient permeation for a glassy polymer and a carbon molecular sieve. Average and local diffusion coefficients are extrapolated to zero upstream partial pressure to eliminate effects caused by concentration dependence. Good agreement between the techniques was observed for the glassy polymer. On the other hand, carbon molecular sieves, possessing a more complex morphology, exhibit a greater difference in diffusion coefficients determined by the various techniques. Nevertheless, comparison of the analysis techniques is shown to provide potentially valuable insights into the morphological features of such carbon molecular sieves. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1747–1755, 1998  相似文献   

8.
The contamination of various parts of citrus fruits by toluene (a representative of volatile organic compounds-VOCs) was analyzed. The model of contamination distribution, based on investigations of the sorption and accumulation of toluene in particular parts of citrus fruits was considered. Solvent extraction of components from fruit parts (waxy layer, cuticle, and pulp) was applied. The extracts were analyzed by gas chromatography. The sorption time profiles for such citrus fruits as kumquats and mandarins were determined by plotting the extracted mass, or the relationship C/C(0), versus the sorption time of toluene. After the sorption process the highest concentration of toluene was observed in the flavedo, where the oil glands of kumquats and mandarins are located. The data obtained prove that the high dissolution of aromatic hydrocarbons results from the presence of essential oils in the oil glands. The diffusion coefficients of toluene for the cuticle and pulp of kumquats were also calculated. The results of model investigations were compared with the actual concentration of toluene in kumquats, citrons, mandarins and oranges from outdoor stands and orchards.  相似文献   

9.
Various types of ethylene–propylene-diene terpolymers (EPDM) and crosslinking procedures have been investigated with pervaporation, vapor sorption, liquid sorption and gas permeation experiments. The EPDM parameters that have been changed are ethylene content, molecular weight, choice of third monomer, type of branching and various crosslinking procedures.The permeability coefficients were determined from pervaporation experiments and were about 40,000 Barrer for toluene and 700 Barrer for water. However, from vapor sorption measurements, a value of 22,000 Barrer for toluene was obtained which is somewhat lower. It should be realized that these data can only be compared qualitatively; the permeabilities obtained from sorption isotherms are derived data while in case of the pervaporation experiments it is experimentally measured.There is an indication that toluene behaves independently from water but the presence of toluene does influence the water flux during pervaporation. Gas permeation experiments resulted in permeabilities for CO2, O2 and N2 of 120, 24 and 11 Barrer, respectively. No clear differences were found for both EPDM-variation and different crosslinking procedures.  相似文献   

10.
Inverse gas chromatography (IGC) is a very fast, accurate, and reliable technique to measure diffusion coefficients. This technique however, has been limited to measurements in the infinite dilution region, i.e., in the region of negligible amount of solvent in the polymer. We have extended the scope of inverse gas chromatography to measure diffusion coefficients at finite concentrations of the solvent. This involves doping the carrier gas with a solvent of interest to achieve finite concentrations of solvent in the carrier gas and hence in the polymer. The carrier gas is passed through a saturator maintained at constant temperature to achieve this purpose. Diffusion coefficients for polyvinyl acetate–toluene, and polystyrene–toluene systems were determined at finite concentrations. The results were compared with the traditional gravimetric sorption and piezoelectric sorption measurements reported in the literature. The data are in excellent agreement with the values reported, correlate well with the Vrentas–Duda free volume theory, and can also be predicted from infinitely dilute data using the free volume theory. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1279–1290, 1997  相似文献   

11.
As demonstrated in Part II of this series of studies, the hydrophobic character of CF4 plasma-treated Nylon 6 and poly(ethylene terephthalate) (PET) decay with time of water immersion, and the rate of decay can be used as a measure for the surface mobility of (substrate) polymers. The same method of using fluorine-containing moieties introduced by CF4 plasma treatment as surface labeling is applied to investigate the influence of a thin layer of plasma polymer of methane applied onto the surface of those polymers. An ultrathin layer of plasma polymer provides a barrier to the rotational and diffusional migration of the introduced chemical moieties from the surface into the bulk of the film. The influence of operational parameters of plasma polymerization on the surface dynamic stability are examined by measuring the decay rate constants for (subsequently) CF4 plasma-treated samples. The rate constant was found to decrease sharply with increasing value of plasma energy input manifested by J/kg monomer, and no decay was observed as the energy input reached a threshold value (about 6.5 GJ/kg for PET, about 7.0 GJ/kg for Nylon 6), indicating that unperturbable surfaces can be created by means of plasma polymerization.  相似文献   

12.
《Soft Materials》2013,11(2-3):195-212
Abstract

Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1‐vinyl‐2‐ pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma‐rays from 60Co sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range ?10 to +10°C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was referred to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with FVP=0.19 has been estimated to be gH2O/gPolymer=0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve‐fit of the early‐stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5×10?11 m2 s?1 and 4.5×10?11 m2 s?1, depending on the polymer composition, the cross‐link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was ≈24 kJ mol?1. Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.  相似文献   

13.
The present work tries to introduce a high‐performance nano‐composite membrane by using polydimethylsiloxane (PDMS) as its main polymer matrix to meet some specific requirements in industrial gas separations. Different nano‐composite membranes were synthesized by incorporating various amounts of nano‐sized silica particles into the PDMS matrix. A uniform dispersion of nano‐particles in the host membranes was obtained. The nano‐composite membranes were characterized morphologically by scanning electron microscopy and atomic force microscopy. Separation properties, permeability, and ideal selectivity of C3H8, CH4, and H2 through the synthesized nano‐composite membranes with different nano‐particle contents (0.5, 1, 1.5, 2, 2.5, and 3 wt%) were investigated at different pressures (2, 3, 4, 5, 6, and 7 atm) and constant temperature (35°C). It was found out that a 2 wt% loading of nano‐particles into the PDMS matrix is optimal to obtain the best separation performance. Afterwards, sorption experiments for the synthesized nano‐composite membranes were carried out, and diffusion coefficients of the gases were calculated based on solution‐diffusion mechanism. Gas permeation and sorption experiments showed an increase in sorption and a decrease in diffusion coefficients of the gases through the nano‐composite membranes by adding nano‐particles into the host polymer matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The sorption/desorption of carbon disulfide into/from PEEK as a function of crystallinity and temperature was investigated. The sorption curves of carbon disulfide into PEEK show only two major regions: (a) an increase of penetrant weight with time, and (b) a limiting equilibrium value (solubility). This is in contrast to the sorption of toluene into PEEK which shows three regions. The solubility of carbon disulfide decreases with increasing crystallinity, but temperature has little effect on the solubility in the temperature range of 25–40°C. An acceleration in penetration rate at the later stage of diffusion is observed for PEEK films whose crystallinity is greater than 13.4%, suggesting Supercase II diffusion. Carbon disulfide can be desorbed completely from PEEK in contrast to other fluids, such as toluene or methylene chloride, which are difficult to desorb. The normalized weight loss of carbon disulfide during desorption is an exponential function of square-root time. Solvent-induced crystallization was observed. Crystallinity was estimated from both the measured density and microhardness of the desorbed polymer and polymer which had undergone a sorption/desorption/resorption/desorption cycle. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The effect of presence of water on the transport of oxygen through films of Nylon-6 was evaluated at 5, 23, and 40°C by permeation experiments. Through the oxygen permeability experiments it was found that the diffusion of oxygen through Nylon-6 is not a simple Fickian process and the total diffusion process can be expressed by a bimodal diffusion mechanism. Permeability, solubility, and diffusion coefficients were determined as a function of water activity for both mechanisms. The effect of sorbed water on the oxygen diffusion and solubility in the polymer is presented as a function of the state of water in the polymer and as a result of the molecular competition between water and oxygen. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Ethanol—water concentration profiles in cellulose acetate membranes were measured under steady-state pervaporation conditions. Knowledge of these profiles leads to a better understanding of the diffusion process during pervaporation. The concentration profiles were determined by a film-stack method, using three to six layers. It is shown that permeation of ethanol—water mixtures proceeds in a coupled way and that crossterm diffusion coefficients need to be considered. Furthermore, the occurrence of sorption resistances at the feed/membrane interface can be established from these experiments.  相似文献   

17.
Desulphurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of solubility and diffusion behavior of typical gasoline components through PEG membranes with various crosslinking degrees. The sorption, diffusion and permeation coefficients were calculated by the systematic studies of dynamic sorption curves of gasoline components such as thiophene, n-heptane, cyclohexane, cyclohexene and toluene in PEG membranes. Furthermore, the temperature dependence of diffusion and solubility coefficients and the influence of crosslinking degree on sorption and diffusion behaviors were conducted to elucidate the mass-transfer mechanism. According to the discussions on dynamic sorption curves, transport mode, activation energy and thermodynamic parameters, thiophene species were the preferential permeation components. Crosslinking is an effective modification way to improve the overall performance of PEG membranes applied in gasoline desulphurization. The pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the conclusions. All these investigations will provide helpful suggestions for the newly emerged membrane desulphurization technology and complex organic mixture separation by pervaporation.  相似文献   

18.
Sorption isotherms, sorption enthalpies, and diffusion coefficients for water in an 11 μm thick PEO/PAA multi-layer film have been measured at 30, 40, and 60 °C for relative humidities between 0 and 70%. All quantities were measured on the same film using the quartz crystal microbalance/heat conduction calorimeter. Water diffusion coefficients in the film are several orders of magnitude lower than in the separate components. Sorption isotherms are of type III at 30 and 40 °C and linear at 60 °C. Water vapor permeabilities are calculated as the product of Henry's law solubility and diffusion coefficient. The permeability of the PEO/PAA multilayer film is exceedingly low compared to other polymer films used as membranes. The enthalpy of water sorption determined from the sorption isotherms using the van’t Hoff relation is 32.9 ± 0.3 kJ/mol. Calorimetric enthalpies of water sorption range from 42 to 34 kJ/mol at 30 and 40 °C over the humidity range studied. The change in motional resistance, a quantity proportion to the loss compliance of the film, has also been recorded at all three temperatures, and a common trend is an increase in loss compliance with increasing relative humidity, indicating plasticization of the film by water.  相似文献   

19.
The sorption isotherm and the polymer mass-fixed diffusion coefficients, D, for toluene in butyl rubber have been measured by the incremental sorption method to concentrations of 130%, corresponding to a solvent volume fraction of 0.578. The increase in D with concentration is strongly exponential to a concentration of 30% and then begins to level out. Since the nature of the dimensional change occurring in vapor sorption was not known, the values of D were converted to solvent self-diffusion coefficients, D1, assuming both swelling in the thickness direction (1D) and isotropically (3D). The free volume (FV) theory of Fujita was fitted to the resulting D1 with the zero concentration diffusion coefficient and the self-diffusion coefficient of toluene as limiting values leaving only a single arbitrary parameter. In this form the FV theory was able to describe the trend of the experimental D1 for the 1D and 3D cases equally well. Values of D were back-calculated from the FV relations for the 1D and 3D cases for comparison with the experimental results and with the diffusion coefficient determined by immersion in toluene. These comparisons favor the assumption that swelling is isotropic. It appears that the simple free volume relation is capable of providing a satisfactory representation of the experimental data with only a single fitting parameter, although there are moderate quantitative discrepancies. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Direct methanol fuel cells (DMFCs) are promising portable power sources. However, their performance diminishes significantly because of high methanol crossover (flux) in the polymer electrolyte membrane (e.g., Nafion 117) at the desired stoichiometric methanol feed concentration. In this study, the diffusion and sorption of methanol and water in Nafion 117 were measured using time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. This technique is unique because of its ability to measure multicomponent diffusion and sorption within a polymer on a molecular level in real time as function of concentration. Both the effective mutual diffusion coefficients and concentrations of methanol and water in Nafion 117 were determined with time-resolved FTIR-ATR spectroscopy as a function of methanol solution concentration. The methanol flux, calculated from FTIR-ATR, matched that determined from a conventional technique (permeation cell) and increased by almost 3 orders of magnitude over the methanol solution concentration range studied (0.1-16 M). Furthermore, the data obtained in this study reveal that the main contribution to the increase in methanol flux is due to methanol sorption in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号