首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

2.
Helium droplet technique has been used in order to measure the strength of the infrared absorption in small ammonia and water clusters as a function of size. Hydrogen bonding in ammonia and water dimers causes an enhancement of the intensity of the hydrogen stretching bands by a factor of four and three, respectively. Two types of the hydrogen bonded clusters show different size dependence of the infrared intensity per hydrogen bond. In ammonia (NH3)2 and (NH3)3 it is close to the crystal value. In water clusters, it increases monotonically with cluster size being in tetramers, a factor of two smaller than in the ice. The measured infrared intensity in water clusters is found to be a factor of two to three smaller as compared to the results of numerical calculations.  相似文献   

3.
Two-color (1 + 1') REMPI mass spectra of o-, m- and p-fluorophenol.ammonia (1 ration) clusters were measured with a long delay time between excitation and ionization lasers. The appearance of NH(4)(NH(3))(n-1)(+) with 100 ns delay after exciting the S(1) state is a strong indication of generation of long-lived species via S(1). In analogy with the phenol.ammonia clusters, we conclude that an excited state hydrogen transfer reaction occurs in o-, m- and p-fluorophenol.ammonia clusters. The S(1)-S(0) transition of o-, m- and p-fluorophenol.ammonia (1 : 1) clusters were measured by the (1 + 1') REMPI spectra, while larger (1 ration) cluster (n = 2-4) were observed by monitoring the long-lived NH(4)(NH(3))(n-1) clusters action spectra. The vibronic structures of m- and p-fluorophenol.ammonia clusters are assigned based on vibrational calculations in S(0). The o-fluorophenol.ammonia (1 : 1) cluster shows an anharmonic progression that is analyzed by a one-dimensional internal rotational motion of the ammonia molecule. The interaction between the ammonia molecule and the fluorine atom, and its change upon electronic excitation are suggested. The broad action spectra observed for the o-fluorophenol.ammonia (1 : n) cluster (n>== 2) suggest the excited state hydrogen transfer is faster than in m- and p-fluorophenol.ammonia clusters. The different reaction rates between o-, m- and p-fluorophenol.ammonia clusters are found from comparison between the REMPI and action spectra.  相似文献   

4.
Ammonia clusters (NH3)n (n=2-10(4)) have been assembled inside helium droplets and studied via infrared laser spectroscopy. The studied spectral range of 3100-3500 cm(-1) covers the nu1 and nu3 fundamental stretching bands as well as the 2nu4 overtone of the bend of ammonia molecules. The results show strong coupling of the 2nu4 overtone with the fundamental vibrations for all cluster sizes except dimers. The intensity of the nu3 band relative to the total intensity in the spectrum increases from about 30% to about 80% upon increase of the average cluster size from n=5 to n=10(4). We attributed this effect to the concomitant decrease in the fraction of the surface molecules. The results indicate that ammonia clusters obtained in He droplets have a compact structure and that inner molecules in the clusters have similar hydrogen-bonded coordination as in the crystalline form of ammonia. This surprising result is ascribed to a directionality of the hydrogen bond, which guides the low temperature growth of the cluster in He droplets.  相似文献   

5.
N-H···π hydrogen-bonded (H-bonded) structures were studied by applying vibrational spectroscopy to self-aggregate clusters of 2,5-dimethylpyrrole (DMPy) and its binary clusters with pyrrole (Py). The NH stretching vibrations of jet-cooled clusters were observed by IR cavity ringdown spectroscopy. A combination of experiments and density functional theory calculations revealed the stable structures, intermolecular binding energies, and harmonic vibrational frequencies. The IR spectrum of the DMPy self-aggregate clusters was very similar in spectral features to that of the Py clusters in a previous work. The observed NH stretching vibrations at 3505, 3420, 3371, and 3353 cm(-1) are simultaneously red-shifted by ~25 cm(-1) from the Py monomer, dimer, trimer, and tetramer, respectively. Based on a spectral analogy of DMPy with Py, and a consistency of the calculated harmonic frequencies with experiments, the H-bonded structures of the DMPy clusters were determined to be of a T-shape for a dimer and a cyclic for a trimer and a tetramer. For the DMPy-Py binary clusters, we discussed the stability and geometry of the N-H···π interactions in the T-shaped dimer and the cyclic trimer. The binary dimer showed the only single NH stretch at 3419 cm(-1) in the IR spectrum. A vibrational analysis of the H-bonded NH stretches as well as the calculated stabilization energies deduced that only the binary dimer by DMPy as an acceptor and Py as a donor can exist in a supersonic jet. For binary trimers, NH stretches were observed due to both (DMPy)(2)-(Py)(1) and (DMPy)(1)-(Py)(2). They were found to have different vibrational patterns from each other; the former showed three dispersed NH stretches, and the other had two quasi-degenerate NH stretches. Throughout this study, we also considered the intermolecular geometries, such as the H-bond distance and the angle in terms of the methyl group substitution effect.  相似文献   

6.
The gas phase infrared spectrum (3250-3810 cm-1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by action spectroscopy of mass selected and isolated ions. The four bands obtained are assigned to N-H stretching modes and to O-H stretching modes. The N-H stretching modes observed are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The O-H stretching modes observed are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicular transitions. The K-type equidistant rotational spacings of 11.1(2) cm-1 (NH4+) and 29(3) cm-1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The relative band intensities recorded compare favorably with predictions of high level ab initio calculations, except on the nu3(H2O) band for which the observed value is about 20 times weaker than the calculated one. The nu3(H2O)/nu1(H2O) intensity ratios from other published action spectra in other cationic complexes vary such that the nu3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular, among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggest that the coupling of the nu3(H2O) and nu1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings together render a picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high level electronic structure calculations at the coupled-cluster singles and doubles with a perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. The authors' extrapolated values at the CCSD(T) complete basis set limit are De [NH4+-(H2O)]=-85.40(+/-0.24) kJ/mol and DeltaH(298 K) [NH4+-(H2O)]=-78.3(+/-0.3) kJ/mol (CC2), in which double standard deviations are indicated in parentheses.  相似文献   

7.
Fárník M  Davis S  Nesbitt DJ 《Faraday discussions》2001,(118):63-78; discussion 109-19
Structural and dynamical information on small hydrogen-bonded systems is revealed by high-resolution IR spectroscopy of HCl dimer, trimer and tetramer. In (HCl)2, four combination bands tentatively assigned to the Van der Waals stretch nu 4 and geared band nu 5 vibrations are observed. The study focuses on two unexpected results: (i) all of the observed bands are built only on the bound HCl stretch nu 2, and (ii) the bands predominantly originate from the 9-fold less populated upper tunneling level of the ground state. Model 3D quantum calculations are presented to show that both these surprising trends originate from the large amplitude tunneling dynamics in the dimer. The (HCl)3 spectra are assigned and analyzed for multiple isotopomeric contributions. The spectral fit reveals large homogeneous line broadening indicating the excited state lifetime of approximately 1.6 ns and tentatively associated with dynamics of intramolecular vibrational energy distribution (IVR) induced trimer ring opening. Finally, first high-resolution data on the HCl stretch fundamental spectrum of (HCl)4 are presented.  相似文献   

8.
The rotationally resolved Fourier transform infrared (FTIR) spectrum of the nu(s) HCl and DCl stretching bands for the hydrogen bonded complex H2S-HCl and its isotopomer D2S-DCl have been observed in a supersonic jet at 0.02 cm(-1) resolution. In the same experimental conditions, two additional bands observed without rotational structure in the HCl range of the dimer have been assigned to the cyclic trimer H2S-(HCl)(2). The multidimensional coupling picture involving the donor stretch mode nu(s) and low frequency intermolecular modes already evidenced in several medium strength hydrogen bonded complexes is beautifully confirmed by the observation of completely separated hot band progressions in the 198 K cell spectrum of both dimers. Based on our anharmonic adiabatic approach for the treatment of the coupled vibrations, absolute vibrational frequencies, diagonal and off-diagonal anharmonicities as well as rovibrational coupling constants obtained from analyses of several 2-D subspaces at MP2 and CCSD(T) level are in excellent agreement with spectroscopic results. In the case of small light complexes, the combination of elevated rotational constants and a negligible contribution of intramolecular vibrational redistribution (IVR) improve the reliability of predissociation lifetime measurements, estimated to 180 ps for H2S-HCl and above 200 ps for D2S-DCl.  相似文献   

9.
Accurate anharmonic experimental vibrational frequencies for water clusters consisting of 2-5 water molecules have been predicted on the basis of comparing different methods with MP2/aug-cc-pVTZ calculated and experimental anharmonic frequencies. The combination of using HF/6-31G* scaled frequencies for intramolecular modes and anharmonic frequencies for intermolecular modes gives excellent agreement with experiment for the water dimer and trimer and are as good as the expensive anharmonic MP2 calculations. The water trimer, the cyclic Ci and S4 tetramers, and the cyclic pentamer all have unique peaks in the infrared spectrum between 500 and 800 cm-1 and between 3400 and 3700 cm-1. Under the right experimental conditions these different clusters can be uniquely identified using high-resolution IR spectroscopy.  相似文献   

10.
Infrared spectra of Li(NH3)(n) clusters as a function of size are reported for the first time. Spectra have been recorded in the N-H stretching region for n=4-->7 using a mass-selective photodissociation technique. For the n=4 cluster, three distinct IR absorption bands are seen over a relatively narrow region, whereas the larger clusters yield additional features at higher frequencies. Ab initio calculations have been carried out in support of these experiments for the specific cases of n=4 and 5 for various isomers of these clusters. The bands observed in the spectrum for Li(NH3)(4) can all be attributed to N-H stretching vibrations from solvent molecules in the first solvation shell. The appearance of higher frequency N-H stretching bands for n > or =5 is assigned to the presence of ammonia molecules located in a second solvent shell. These data provide strong support for previous suggestions, based on gas phase photoionization measurements, that the first solvation shell for Li(NH3)(n) is complete at n=4. They are also consistent with neutron diffraction studies of concentrated lithium/liquid ammonia solutions, where Li(NH3)(4) is found to be the basic structural motif.  相似文献   

11.
The IR spectra for various sizes of pyrrole clusters were measured in the NH stretching vibration region by infrared cavity ringdown spectroscopy. The hydrogen-bonded structures and normal modes of the pyrrole clusters were analyzed by a density functional theory calculation of the B3LYP/6-311+G(d,p) level. Two types of pulsed nozzles, a slit and a large pinhole, were used to generate different cluster size distributions in a supersonic jet. A rotational contour analysis of the NH stretching vibration for the monomer revealed that the slit nozzle provides a warmer jet condition than the pinhole one. The IR spectra, measured under the warmer condition, showed the intense bands at 3444, 3392, and 3382 cm(-1), which were assigned to hydrogen-bonded NH stretching vibrations due to the dimer, the trimer, and the tetramer, respectively. On the other hand, the IR spectra measured under a lower temperature condition by a pinhole nozzle showed a broad absorption feature in addition to sharp bands. This broad absorption was reproduced by the sum of two Gaussians peaks at 3400 and 3372 cm(-1) with widths of 30 and 50 cm(-1) (FWHM), respectively. Compared with the spectra of the condensed phase, two bands at 3400 and 3372 cm(-1) were assigned to hydrogen-bonded NH stretching vibrations of larger clusters having liquid-like and solid-like structures, respectively.  相似文献   

12.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

13.
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.  相似文献   

14.
We have carried out ab initio and density functional theory calculations of hydrated rubidium cations. The calculations involve a detailed evaluation of the structures, thermodynamic properties, and IR spectra of several plausible conformers of Rb+ (H2O)(n=1-8) clusters. An extensive search was made to find out the most stable conformers. Since the water-water interactions are important in hydrated Rb+ complexes, we investigated the vibrational frequency shifts of the OH stretching modes depending on the number of water molecules and the presence/absence of outer-shell water molecules. The predicted harmonic and anharmonic vibrational frequencies of the aqua-Rb+ clusters reflect the H-bonding signature, and would be used in experimental identification of the hydrated structures of Rb+ cation.  相似文献   

15.
The vibrational overtone spectrum of HOONO is examined in the region of the 2 nu(OH) and 3 nu(OH) bands using action spectroscopy in conjunction with ab initio intensity calculations. The present measurements indicate that the oscillator strength associated with the higher energy trans-perp conformer of HOONO is stronger relative to the lower energy cis-cis conformer for both these vibrational overtone levels. Ab initio intensity calculations carried out at the QCISD level of theory suggest that this disparity in oscillator strength apparently arises from differences in the second derivative of the transition dipole moment function of the two isomers. The calculations indicate that the oscillator strength for the trans-perp isomer is approximately 5.4 times larger than that of the cis-cis isomer for the 2 nu(OH) band and approximately 2 times larger for 3 nu(OH) band. The band positions and intensities predicted by the calculations are used to aid in the assignment of features in the experimental action spectra associated with the OH stretching overtones of HOONO. The observed relative intensities in the experimental action spectra when normalized to the calculated oscillator strengths appears to suggest that the concentration of the higher energy trans-perp isomer is comparable to the concentration of the cis-cis isomer in these room temperature experiments.  相似文献   

16.
The infrared absorption spectrum of ammonia borane vapor has been recorded between 3600 and 600 cm(-1). Of the eleven infrared active fundamental vibrational modes, seven modes of NH(3)(11)BH(3) and four modes of NH(3)(10)BH(3) were observed. The spectra were recorded with sufficient resolution to observe the rotational structure of the bands, which allowed for preliminary least-squares fitting of the band origins and rotational constants. First-principles electronic structure calculations were performed to obtain anharmonic band origins and their intensities. The band assignments are discussed in relation to other spectroscopic techniques that have been previously used to study this molecule. A semi-empirical estimate of the vapor pressure of ammonia borane at room temperature (22 °C) was made and found to be ~1 × 10(-4) Torr. The assignment of the measured modes was aided by the calculated anharmonic frequencies and their infrared intensities. The combination of the CCSD(T) harmonic frequencies with the B3LYP anharmonicities, obtained from second-order vibrational perturbation theory, was found to produce an overall best agreement with the measured band origins.  相似文献   

17.
Infrared photodissociation action spectra of protonated ammonia cluster ions, NH(4) (+)(NH(3))(n) (n=5-8), were measured in the range of 1020-1210 cm(-1) by using a tunable infrared free electron laser. Analyses by the density functional theory (DFT) show that the spectral features observed can be assigned to the nu(2) vibrational mode of the NH(3) molecules in NH(4) (+)(NH(3))(n). Size dependence of the spectra supports structural models obtained by the DFT calculations, in which the NH(4) (+) ion is solvated by the four nearest-neighbor NH(3) molecules. For NH(4) (+)(NH(3))(5), the spectrum between 1000 and 1700 cm(-1) was measured. The nu(4) bands of the NH(3) molecules and the NH(4) (+) ion were found in the range of 1420-1700 cm(-1).  相似文献   

18.
The coexistence of axial and equatorial hydrogen-bonded conformers of 1?:?1 (CH(2))(3)S-HF (and -DF) has been observed in the same adiabatic expansion of a supersonic jet seeded with argon and in a static absorption cell at room temperature. High level calculations computed the axial conformer to be the most stable one with a small energy difference with respect to the equatorial one, in full agreement with previous microwave experiments. On the grounds of band contour simulations of FTIR spectra and ab initio energetic and anharmonic vibrational calculations, two pairs of ν(s) HF donor stretching bands, observed in a series of jet-FTIR spectra at 3457.9 and 3480.5 cm(-1) have been respectively assigned to the axial and equatorial forms of the 1?:?1 complex. In the jet-FTIR spectra series with HF, the assignment of an additional broad band (about 200 cm(-1) higher in frequency with respect to ν(s)) to a 1?:?2 complex has been supported by theoretical investigations. Experimental detection of both axial and equatorial forms of a cyclic trimer has been confirmed by calculated energetic and vibrational properties. The nature of hydrogen bonding has been examined within topological frameworks. The energetic partitioning within the 1?:?1 dimers has been elucidated with SAPT techniques. Interestingly, the interconversion pathway between two 1?:?1 structures has been explored and it was seen that the formation of the 1?:?1 complex affects the interconversion barrier on the ring puckering motion. The band contour analysis of gas phase FTIR experiments provided a consistent set of vibrational frequencies and anharmonic coupling constants, in good agreement with ab initio anharmonic vibrational calculations. Finally, from a series of cell-FTIR spectra recorded at different partial pressures of (CH(2))(3)S and HF monomers, the absorption signal of the 1?:?1 complex could be isolated which enabled to estimate the equilibrium constant K(p) = 0.023 at 298 K for the dimerization.  相似文献   

19.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

20.
Theoretical model for vibrational interactions in the hydrogen-bonded dimer of benzoic acid is presented. The model takes into account anharmonic-type couplings between the high-frequency O-H and the low-frequency O[cdots, three dots, centered]O stretching vibrations in two hydrogen bonds, resonance interactions (Davydov coupling) between two hydrogen bonds in the dimer, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The vibrational Hamiltonians and selection rules for the C(2h) geometry in the S(0) state and for the C(s) in-plane bent geometry in the S(1) state of the dimer are derived. The model is used for theoretical simulation of the O-H stretching IR absorption bands of benzoic acid dimers in the gas phase in the electronic ground and first excited singlet states. Ab initio CIS and CIS(D)6-311++G(d,p) calculations have been performed to determine geometry, frequencies, and excited state energies of benzoic acid dimer in the S(1) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号