首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The equilibrium structure, stability, and electronic properties of the Al(13)X (X=H,Au,Li,Na,K,Rb,Cs) clusters have been studied using a combination of photoelectron spectroscopy experiment and density functional theory. All these clusters constitute 40 electron systems with 39 electrons contributed by the 13 Al atoms and 1 electron contributed by each of the X (X=H,Au,Li,Na,K,Rb,Cs) atom. A systematic study allows us to investigate whether all electrons contributed by the X atoms are alike and whether the structure, stability, and properties of all the magic clusters are similar. Furthermore, quantitative agreement between the calculated and the measured electron affinities and vertical detachment energies enable us to identify the ground state geometries of these clusters both in neutral and anionic configurations.  相似文献   

3.
As the attachment of a metal change the molecular and electronic structure of carbon clusters, the electronic properties as ionization potentials (IP) and electron affinities (EA) for small Lanthanum-carbon clusters LaC n with n=1–6 have been investigated theoretically. They were studied by density-functional-theory (DFT) within LDA and considering Gradient corrections (GC) for the exchange-correlation potential ( Becke-Perdew). The results for both quantities were obtained in good agreement with the experimental data: odd-even alternating IP’s, and no alternations for the EA’s. The different charge location in the carbon chains or at the La atom can explain the different trends of both quantities, respectively.  相似文献   

4.
Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment.  相似文献   

5.
Self-consistent-field-Xα-scattered wave calculations on clusters Si2O76? and H6Si2O7 modeling silica have been performed. Incorporation of Si 3d orbitals produces significant changes in the overall valence structure. In addition to σ Si — O bonds, there exists a bonding π character due to the participation of O 2p and Si 3d. Hydrogen terminators do not seem to correct edge effects for these π states.  相似文献   

6.
An all-electron ab initio LCAO -MO SCF calculation has been carried out for the electronic structure of small copper clusters (Cun, n = 2–6). The basis set superposition error occurring in the calculation, the equilibrium configuration of Cu3, the bond energy in the clusters, and the localized d-hole in excited and ionized states of Cu2 are closely examined.  相似文献   

7.
X-ray diffraction in combination with X-ray emission and EXAFS spectroscopy were used to study the electronic and atomic structure of metal nanoparticles stabilized on a carbon support in novel Pt x Co/C catalysts of different composition with the molar ratio Pt:Co (x) of 1 to 3. Cobalt atoms in nanoparticles, which average size was 2–4 nm, were shown to form chemical bonds both with platinum atoms and carbon atoms of the support material.  相似文献   

8.
Copper adsorption and Si, Al, Ca, Mg, and Na release from clinoptilolite   总被引:1,自引:0,他引:1  
Copper adsorption onto clinoptilolite (natural zeolite), Al/Si dissolution, and Mg, Ca, and Na release from the substrate were the subjects of the investigation described here. Experimental variables were Cu and electrolyte concentrations and solution pH. Copper adsorption was found to increase with increased pH and with decreased electrolyte concentration. Large amounts of K were also adsorbed from electrolyte. Since solution pH was assumed as a variable, the effects of [H(+)] differentiation on Cu adsorption and on Al/Si dissolution were also examined. Al dissolution was affected mainly by electrolyte concentration, whereas Si dissolution was affected mainly by adsorbed Cu amount. It was assumed that the release of Mg, Ca, and Na occurs through ion-exchange reactions with solution K(+), because their release is affected more by electrolyte concentration than by adsorbed Cu. From the study of FTIR spectra for various samples used in the present investigation, we observed that the removal of framework Si/Al shifts the band which was attributed to O-T-O stretching vibration toward higher frequency. Significant changes were observed for the bands assigned to Si-OH-Al bridges and to monomeric and polymeric hydrogen bonds at the region between 3650 and 3200 cm(-1). It is proposed that the Cu species caused the destruction of H-bonded structures, whereas K adsorbed species were located at exchangeable sites after an ion-exchange process between K and Ca, Mg, and Na from the zeolite's surface. An expansion of the zeolite framework was detected from XRD patterns under acid conditions.  相似文献   

9.
Unusually high ionization energies have been observed for Cs-O clusters having certain sizes and composition, namely for Cs2n+zOn with z=8, 18, 34, 58 and 92. The anomalies are well-defined for clusters containing from 1 to 7 oxygen atoms. The indicated values of z are identical to the number of electrons in closed shells of angular momentum.  相似文献   

10.
The electronic states of small Al n (n=2–8) clusters have been calculated with a relativistic ab-initio MO-LCAO Dirac-Fock-Slater method using numerical atomic DFS wave-functions. The excitation energies were obtained from a ground state calculation of neutral clusters, and in addition from negative clusters charged by half an electron in order to account for part of the relaxation. These energies are compared with experimental photo-electron spectra.  相似文献   

11.
We investigate the electronic and structural properties of small (N 20) and medium sized (N 500) clusters of Cu, using the first principles Tight-Binding Linear Muffin-Tin Orbitals (TB-LMTO) method in connection with the real-space recursion scheme. We find the electronic structure resembling the one of simple alkali metal clusters: Pronounced shell closing effects can be identified in the ionization potentials as well as in the HOMO-LUMO gaps for the magic sizesN=8, 20, 34 and 40. The low-energy equilibrium geometries show considerable Jahn-Teller distortions, just as in the case of alkali metals.This article was processed using Springer-Verlag TEX Z.Physik D macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

12.
Electronic structure studies on neutral, singly and doubly ionized Be n clusters (n≤5) have been carried out in order to investigate the stability and observability of charged clusters. Our studies employ wave function expansion in terms of gaussian type orbitals and have been carried out within local spin density formalism. It is shown that although small doubly ionized clusters are unstable, they are protected from fragmentation by energy barriers. We illustrate this explicitly for trimers by presenting a Born-Oppenheimer surface of Be3, Be 3 + and Be 3 ++ . It is argued that depending on their geometries, the observable doubly charged clusters can be generated through a one or two photons ionization. We also present results on the distribution of “hole charge” in doubly ionized clusters and show that a small cluster exhibits metallic like behaviour in regard to distribution of missing electronic charge.  相似文献   

13.
We used multiconfigurational methods and a large basis set to compute the potential energy curves of the valence and valence-Rydberg electronic states of MgO molecule. New bound electronic states are found. Using these highly correlated wave functions, we evaluated their mutual spin-orbit couplings and transition moment integrals. For the bound electronic states of MgO, we deduced an accurate set of spectroscopic constants that agree remarkably well with experimental results. Moreover, our potentials, transition moments, and spin-orbit coupling evolutions are incorporated into Fermi golden rule calculations to deduce the radiative lifetimes of MgO(B?(1)Σ(+)) rovibrational levels and the natural lifetimes of MgO(A?(1)Π) vibrational levels, where a good agreement is found with experimental values. Finally, we suggest new routes for the production of cold Mg and O atoms and cold MgO molecules.  相似文献   

14.
Experimentally determined or ab initio calculated molecular geometries carry no information about their origin. Employing the Jahn-Teller (JT) vibronic coupling effects as the only source of instability and consequent distortions of high-symmetry molecular configurations, we have worked out a procedure that allows us to trace the origin of particular geometries and determine the detailed electronic mechanism of their formation. This procedure is illustrated by considering a series of X(4) clusters with X=Na, Mg, Al, Si, P, and S. It shows explicitly why Na(4), Si(4), and Al(4) have a rhombic geometry in the ground state, while Mg(4) and P(4) are tetrahedral, whereas S(4) is a trapezium. Even when the minimum-energy geometries are the same (as in the case of rhombic Na(4), Si(4), and Al(4)), the electronic mechanism of their formation is quite different. In particular, in Na(4) and Si(4) the rhombic minima are produced by a strong pseudo JT coupling between two excited states in the square-planar configuration (different in the two cases) that stabilizes one of them and makes it the ground state by rhombic distortions. The rhombic configuration of Al(4) is due to the pseudo JT effect in its ground-state square-planar configuration, and the trapezium in S(4) is formed by two pseudo JT couplings essentially involving excited states. In several cases this analysis shows also the tunneling paths between equivalent configurations.  相似文献   

15.
The electronic structure of small chromium clusters deposited by evaporation onto clean polycrystalline graphite has been studied by means of Auger, X-ray Photoemission (XPS) and Electron Energy Loss (EELS) spectroscopies. The XPS results show an increase in the binding energy of both core levels and valence band reducing the cluster size. The EELS measurements show a variation of the intensity ratio of L3-to-L2 ionization core edges. We interpret this change as due to different redistribution, within the clusterd-band, of the empty states above the Fermi level. As a consequence the XPS results may also be attributed to sizeable change of the electronic structure of the small clusters.  相似文献   

16.
We have investigated the structural and magnetic properties of the doped XM12 and charged M13 (X = Na, Mg, Al, Si, P; M = Sc, Y) clusters using the density‐functional theory with spin‐polarized generalized gradient approximation. It was found that doped atoms can induce significant change of the magnetic moments of Sc13 and Y13 clusters. The total magnetic moments of the NaM12, MgM12, AlM12, SiM12, and PM12 clusters are regular 5, 6 (12), 7, 8, and 9 μb, respectively (but 19 μb for Sc13 and Y13, 12 μb for Y, 18 μb for Sc, Sc, and Y). The doped atom substituting the surface atom of the plausible icosahedral configuration is viewed as the ground‐state structure of the XM12 (X = Na, P; M = Sc, Y) and MgSc12 clusters. While for XM12 (X = Al, Si; M = Sc, Y) and MgY12 clusters, the doped atom occupying the central position of the icosahedral configuration is viewed as the ground‐state structure. The doping and the charging both enhance the stability of the Sc13 and Y13 clusters. These findings should have an important impact on the design of the adjustable magnetic moments systems. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
采用基于密度泛函理论的第一性原理方法系统地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇的结构、稳定性和电子性质.对团簇的平均结合能、镶嵌能、垂直离化势、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的能级差、电荷布居分析、自然键轨道(NBO)进行了计算和讨论.对于Au12M(M=Na,Mg,Al)团簇,它们形成了内含M原子的最稳定的笼状结构.然而对于Au12M(M=Si,P,S,Cl)团簇,它们却形成了以M元素为顶点的稳定锥形结构.在这些团簇中发现Au12S团簇相对是最稳定的,这是由于Au12S团簇形成了稳定的满壳层的电子结构.自然电荷布居分析表明:对于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇电荷总是从Au原子转向M原子.自然键轨道和HOMO分析表明Au12M团簇中发生了Au原子的s-d轨道和M原子的p轨道间的杂化现象.  相似文献   

18.
19.
This article investigated the low-energy structures of Al6Na mC (m = 2, 4, 6, 8) clusters and their electronic structures by using genetic algorithm combined with density functional theory and configuration interaction methods. The computations show that the C atoms prefer sitting at the center, whereas the Na atoms tend to locate at the outside of the clusters. The valence molecular orbitals (MOs) agree well with the prediction of the jellium model. The stronger attraction of the central carbon to the valence electrons will depress the potential energies locally, which makes the 2S level go obviously lower and the 2P and 1D orbitals form a sub-band. The 26 valence electrons in Al6Na4C form closed 1S21P62S21D102P6 shells and correspond to a new magic structure. The MOs and electron localization function show that the sodium cores are exposed at the outside of the valence electrons and form naked cations. The contraction of the valence electrons because of the carbon doping enhances the charges on the Al6C moieties, and the Na+ cores on the peripheries are ionically bonded to the Zintl anions (Al6C)q−. The Al6Na4C has a tetrahedral structure with symmetry Td, and it may be used as building blocks to synthesize Zintl solid.  相似文献   

20.
We report an experimental study of energy pooling collisions involving Cs atoms in the 6P and 5D states. The 5D state was populated by a cw dye-laser tuned to the cesium dipole-forbidden transition 6S → 5D at 685.0 nm. The 6P state was populated by subsequent radiative relaxation of the 5D state. The 6P population density was determined from the absorption of a cw diode-laser probe beam. The population densities of the 5D state and the higher, by energy pooling excited states were determined by measuring the corresponding fluorescence intensities relative to the fluorescence intensity from the optically thin quasi-static wings of the cesium D 2 line. The rate coefficient for the process Cs*(6P)+Cs*(6P)→Cs**(6D)+Cs(6S) is found to be (4.2±0.13)×10?10 cm3 s?1 at T=570 K. In addition, estimates of the rate coefficients for the processes Cs*(6P)+Cs*(5D)→Cs**(7D)+Cs(6S) and Cs*(5D)+ Cs*(5D)→Cs**(7F)+Cs(6S) are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号