首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Electron spectra of tungsten (110) and of thin cobalt (0001) films, clean and after oxygen exposure, have been taken using metastable de-excitation spectroscopy (MDS). The spectra of remanently magnetized Co(0001), obtained with spin polarized MDS (SPMDS), show different intensities in the cobalt induced structure when reversing the polarization of the incident spin polarized He(23 S) atomic beam. Due to theextreme surface sensitivity and thespin selectivity of the de-excitation process, this is evidence of differences in thespin resolved density of states of theoutermost cobalt layer.  相似文献   

2.
Separate Penning electron spectra were measured resulting from the ionization of H atoms by He(21S) and He(23S) metastables in thermal collisions. From these results potential parameters of the diatomics He(21S)-H(2S) (2Σ) and He(23S)-H(2S) (2Σ) as well as the cross-section ratio σ(singlet)/σ(triplet) are derived.  相似文献   

3.
The experimental velocity dependence of the quenching cross section of metastable H(2S) atoms in low energy collisions with hydrogen molecules is compared with theoretical calculations using the formalism of Gersten. This formalism takes into account possible changes of the molecular rotational energy and is in good agreement with experiments at low energies where other theories fail. A dependence of this cross section on the temperature of the molecular gas is predicted which is due to the temperature dependent population of the molecular rotational levels.  相似文献   

4.
Collision energy dependence of partial ionization cross sections (CEDPICS) of p-benzoquinone with He(*)(2 (3)S) metastable atoms indicates that interaction potentials between p-benzoquinone and He(*)(2 (3)S) are highly anisotropic in the studied collision energy range (100-250 meV). Attractive interactions were found around the C==O groups for in-plane and out-of-plane directions, while repulsive interactions were found around CH bonds and the benzenoid ring. Assignment of the first four ionic states of p-benzoquinone and an analogous methyl-substituted compound was examined with CEDPICS and anisotropic distributions of the corresponding two nonbonding oxygen orbitals (n(O) (+),n(O) (-)) and two pi(CC) orbitals (pi(CC) (+),pi(CC) (-)). An extra band that shows negative CEDPICS was observed at ca. 7.2 eV in Penning ionization electron spectrum.  相似文献   

5.
Quantum close-coupling scattering calculations of rotational energy transfer in the vibrationally excited CO due to collisions with He atom are presented for collision energies between 10(-5) and approximately 1000 cm-1 with CO being initially in the vibrational level upsilon=2 and rotational levels j=0,1,4, and 6. The He-CO interaction potential of Heijmen et al. [J. Chem. Phys. 107, 9921 (1997)] was adopted for the calculations. Cross sections for rovibrational transitions and state-to-state rotational energy transfer from selected initial rotational levels were computed and compared with recent measurements of Carty et al. [J. Chem. Phys. 121, 4671 (2004)] and available theoretical results. Comparison in all cases is found to be excellent, providing a stringent test for the scattering calculations as well as the reliability of the He-CO interaction potential by Heijmen et al.  相似文献   

6.
The energy spectra of electrons released in thermal energy (≈ 50 meV) ionizing collisions of He*(21 S, 23 S) with H2 have been measured with high resolution and low background. Based on a detailed data analysis, we report accurate H 2 + (v′) vibrational populationsP(v′) for both He*(21 S)+H2(v′=0–10) and He*(23 S)+H2(v′=0–15) and the spectral shapeS(ε) for the individual vibrational peaks. The vibrational populationsP(v′) are quite similar to the Franck-Condon factorsf v ′0 for unperturbed H2(v″=0)→H 2 + (v′) transitions, but, more in detail, the ratiosP(v′)/f v ′0 show a characteristically differentv′-dependence for He*(23 S), He*(21 S), and HeIα(58.4 nm) ionization. The vibrational level separations in the He*(21 S, 23 S)+H2 spectra agree with those in the HeI photoelectron spectrum to within 1–2 meV. The spectral shapesS(ε) are characteristically different for He*(21 S)+H2 and He*(23 S)+H2, reflecting the respective differences in the entrance channel potentials, as determined previously in ab initio calculations and from scattering experiments.  相似文献   

7.
Electron spectra from He++, He+ and Li+ (10 to 1500 eV) ions colliding under grazing incidence with Li covered W (110) surfaces are reported. The results are compared with those obtained from thermal collisions of (23 S; 21 S) metastable He atoms. In these collisions 1s vacancies are either produced during the collision event (energetic He+ (Li +) collisions) or are brought into the collision (slow He++ (He+, He*) collisions). Population of the 2s orbitals by two electrons produces states which decay by intraatomic Auger processes: we observe autoionization of He** (2s 2) and Li** (1s 2s 2) as well as autodetachment of He?* (1s 2s 2). Alternatively the 1s-holes in the projectile or target (Li) can be filled by Auger processes involving one or two surface electrons. The processes leading to electron emission are studied as a function of the Li coverage in the submonolayer region (0≦ΘLi≦1Ml) and as a function of the projectile energy. It is concluded that with one or two 1s vacancies present in the projectile the double capture of two surface electrons constitutes an important process responsible for electron emission of low work function surfaces.  相似文献   

8.
A metastable hydrogen (deuterium) atom source in which groundstate atoms produced by a RF discharge dissociator are bombarded by electrons, provides a relatively large amount of slow metastable atoms (velocity 3–5 km/s). Total integral cross sections for H*(D*)(2s) + H2(X 1Σ g + ,v=0) collisions have been measured in a wide range of relative velocity (2,5–30 km/s), by using the attenuation method. A significant improvement of accuracy is obtained, with respect to previous measurements, at low relative velocities. Total cross sections for H* and D*, as functions of the relative velocity, are different, especially in the low velocity range. H* + H2 total differential cross sections have also been measured, with an angular spread of 3.6°, for two different collision energy distributions, centered respectively at 100 meV and 390 meV. A first attempt of theoretical analysis of the cross sections, by means of an optical potential, is presented.  相似文献   

9.
Vibrational population factors for the nascent Penning ions HD+ (v′)(… He) and energy of the corresponding Penning electrons are calculated for the ionization event He(23S)(SINGLEBOND)HD(v′ = 0) → [He … HD+(v′)] + e taking place at a range of the He*(SINGLEBOND)HD separations and orientations accessible by the system during thermal energy collisions. The vibrational population factors are obtained from the local widths of the He(23S)(SINGLEBOND)HD(v′ = 0, N) state with respect to autoionization to HD+(… He) in its v′th vibrational level. The initial overall picture of the autoionization event is consistent with the He(23S)(SINGLEBOND)H2(v′ = 0) one. On the other hand, the vibrational population factors are different from the approximate average populations used in initial model theoretical considerations about the Penning processes in the system. Variation of the calculated considerations about the Penning processes in the system. Variation of the calculated quantities with changes in the He*(SINGLEBOND)HD separations and orientations is found to be smooth enough to guarantee that the present data might form a sound basis for construction of analytical representations of the corresponding 2D surfaces and for future study of the dynamics of the collision system. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
We have carried out experimental and theoretical studies of Penning ionization processes occurring in thermal energy collisions of state-selected metastable He*(23 S) and He*(21 S) atoms with ground state alkaline earth atoms X(X=Mg, Ca, Sr, Ba). Penning ionization electron energy spectra for these eight systems, measured with a crossed-beam set-up perpendicular to the collision velocity at energy resolutions 40–70 meV, are reported; relative populations of the different ionic X + (ml) states are presented and well depths D*e for the He*+X entrance channel potentials with uncertainties around 25 meV are derived from the electron spectra as follows: He*(23 S)+Mg/Ca/Sr/Ba: 130/250/240/260 meV; He*(21 S) +Mg/Ca/Sr/Ba: 300/570/550/670 meV. The spectra show substantial differences for the three ionic states X +(2 S), X +(2 P) and X +(2 D) and reveal that transitions to a repulsive potential — attributed to He+X +(2 P)2 Σ formation — are mainly involved for the X +(2 P) channel. Ab initio calculations of potential curves, autoionization widths, electron energy spectra and ionization cross sections are reported for the systems He*(23 S)+Ca and He*(21 S)+Ca. The respective well depths D e * are calculated to be 243(15) meV and 544(15) meV; the ionization cross sections at the experimental mean energy of 72 meV amount to 101 Å2 and 201 Å2, respectively. Very good overall agreement with the experimental electron spectra is observed.  相似文献   

11.
Penning ionization of phenylacetylene and diphenylacetylene upon collision with metastable He*(2(3)S) atoms was studied by collision-energy-/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). On the basis of the collision energy dependence of partial ionization cross-sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the approach of a metastable atom to the target molecule, anisotropy of interaction between the target molecule and He*(2(3)S) was investigated. For the calculations of interaction potential, a Li(2(2)S) atom was used in place of He*(2(3)S) metastable atom because of its well-known interaction behavior with various targets. The results indicate that attractive potentials localize in the pi regions of the phenyl groups as well as in the pi-conjugated regions of the acetylene group. Although similar attractive interactions were also found by the observation of CEDPICS for ionization of all pi MOs localized at the C[triple bond]C bond, the in-plane regions have repulsive potentials. Rotation of the phenyl groups about the C[triple bond]C bond can be observed for diphenylacetylene because of a low torsion barrier. So the examination of measured PIES was performed taking into consideration the change of ionization energies for conjugated molecular orbitals.  相似文献   

12.
Quantum close-coupling scattering calculations of rotational energy transfer (RET) of rotationally excited H(2)O due to collisions with He are presented for collision energies between 10(-6) and 1000 cm(-1) with para-H(2)O initially in levels 1(1,1), 2(0,2), 2(1,1), and 2(2,0) and ortho-H(2)O in levels 1(1,0), 2(1,2), and 2(2,1). Quenching cross sections and rate coefficients for state-to-state RET were computed. Both elastic and inelastic differential cross sections are also calculated and compared with relative experimental results giving generally good agreement in all cases, but less so for inelastic results. Significant differences in the computed collisional parameters, obtained on three different potential energy surfaces (PESs), were found particularly in the ultracold regime. In the thermal regime, the rate coefficients calculated on each of the surfaces are generally in better agreement and comparable, but typically larger, than those obtained in a previous calculation. Unfortunately, a lack of absolute differential or integral inelastic experimental data prevents firm determination of a preferred PES.  相似文献   

13.
The energetics of [Rg... N2O]* autoionizing collision complexes (where Rg=He or Ne) and their dynamical evolution have been studied in a crossed beam apparatus, respectively, by Penning ionization electron spectroscopy (PIES) and by mass spectrometry (MS) techniques in the thermal energy range. The PIES spectra, detected by an electron energy analyzer, were recorded for both complexes at four different collision energies. Such spectra allowed the determination of the energy shifts for Penning electron energy distributions, and the branching ratios for the population of different electronic states and for the vibrational population in the molecular nascent ions. For the [Ne...N2O]* collision complex it was found, by MS, that the autoionization leads to the formation of N2O+, NO+, O+, and NeN2O+ product ions whose total and partial cross sections were measured in the collision energy range between 0.03 and 0.2 eV. The results are analyzed exploiting current models for the Penning ionization process: the observed collision energy dependence in the PIES spectra as well as in the cross sections are correlated with the nature of the N2O molecule orbitals involved in the ionization and are discussed in term of the Rg-N2O interaction potentials, which are estimated by using a semiempirical method developed in our laboratory.  相似文献   

14.
Penning ionization of formic acid (HCOOH), acetic acid (CH3COOH), and methyl formate (HCOOCH3) upon collision with metastable He*(2(3)S) atoms was studied by collision-energy/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). Anisotropy of interaction between the target molecule and He*(2(3)S) was investigated based on the collision energy dependence of partial ionization cross sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the access of a metastable atom to the target molecule. For the interaction potential calculations, a Li atom was used in place of He*(2(3)S) metastable atom because of its well-known similarity in interaction with targets. The results indicate that in the studied collision energy range the attractive potential localizes around the oxygen atoms and that the potential well at the carbonyl oxygen atom is at least twice as much as that at the hydroxyl oxygen. Moreover we can notice that attractive potential is highly anisotropic. Repulsive interactions can be found around carbon atoms and the methyl group.  相似文献   

15.
We report a self consistent tight binding calculation of the cohesion energy of small MgO clusters, up to 12 atoms. We discuss the size variation of the charges, the bond lengths, the electronic gaps. For the first time, we predict the existence of a strong dimerization of the bond length in the small clusters. We underline the consequences of the competition between covalent and electrostatic effects in these ionocovalent systems.  相似文献   

16.
Using crossed atomic, molecular cluster, and cw laser beams in conjunction with mass spectrometric ion detection, we have obtained for the first time results for electron transfer fromstate-selected Rydberg atoms to molecular clusters. We report negative ion mass spectra for (CO2) k ? (4≦k≦25) and (O2) k ? (1≦k≦13) cluster ions, resulting from collisions of Ar** (nd) Rydberg atoms (12≦n≦40) with (CO2) m and (O2) m clusters at relative velocities around 830 m/s, and, for comparison, positive ion mass spectra due to Ne(3s 3 P 2, 0) Penning ionization. For both CO 2 ? and O2-clusters, the negative and the positive ion mass spectra are very different. For (CO2) k Emphasis>/? cluster ions, the mass spectra show distinct variations with principal quantum number of the Rydberg atom, corresponding to differentn-dependences of the effective rate constant for selected cluster ions, as measured relative to the knownn-dependence for SF 6 ? formation in collisions with SF6. For (O2) k ? cluster ions, on the other hand, the mass spectra are almost independent ofn with ion intensities, which clearly reflect their thermochemical stabilities (O 4 ? as dominant species).  相似文献   

17.
Ionic-state-resolved collision energy dependence of Penning ionization cross sections for OCS with He*(2(3)S) metastable atoms was measured in a wide collision energy range from 20 to 350 meV. Anisotropic interaction potential for the OCS-He*(2(3)S) system was obtained by comparison of the experimental data with classical trajectory simulations. It has been found that attractive potential wells around the O and S atoms are clearly different in their directions. Around the O atom, the collinear approach is preferred (the well depth is ca. 90 meV), while the perpendicular approach is favored around the S atom (the well depth is ca. 40 meV). On the basis of the optimized potential energy surface and theoretical simulations, stereo reactivity around the O and S atoms was also investigated. The results were discussed in terms of anisotropy of the potential energy surface and the electron density distribution of molecular orbitals to be ionized.  相似文献   

18.
Measurements have been made of the vibrational branching ratio (υ′=0)/(υ′=1) in N*2 (C3Πu) formed in electronic energy transfer collisions between argon metastable atoms and ground state nitrogen molecules, using crossed molecular beams. In the relative collision energy range, 0.08–0.20 eV, this ratio is 3.5±0.2.  相似文献   

19.
This beam was developed as a target for a crossed-beam electron-atom scattering experiment on the interaction of a polarized spin-1/2 electron with a polarized spin-1 atom. In the future this beam will be used in “Spin-Polarized Metastable Atom Deexcitation Spectroscopy” (SPMDS) for studying ferromagnetic surfaces without and with adsorbate layers. We use a discharge source for producing a beam of metastable helium atoms, a permanent sextupole magnet with a central stop at its exit for selecting He(23 S) atoms in the Zeeman substatem s =+1, a zero-field spin flipper for reversing the atomic beam polarization with respect to a magnetic guiding field, and a Stern-Gerlach magnet for analyzing the atomic polarization. At a distance of 90 cm beyond the exit of the sextupole, in the “interaction region” of an experiment, the polarized beam has a circular cross section of about 6 mm FWHM and a particle density of 1 · 107 atoms/cm3. The reversible spin polarization was determined asP=0.90±0.02. A possible contamination of the beam with metastable singlet atoms is included within this value; the ground-state He atoms are not considered to be part of the polarized beam. An observed contamination with long-lived Rydberg atoms can easily be destroyed by applying a high electric field.  相似文献   

20.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号