首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate constant for the formation of H+5 (D+5) at (86 ± 3) °K by the three-body process has been determined (k3(H) = (2.16 ± 0.10) × 10?28 × 10?28 cm6/molecule2 sec and k3(D) = (1.47 ± 0.20) × 10?28 cm6/molecule2 sec) in a high pressure mass spectrometer. Comparison of this result with published rate data at 300 °K indicates the reaction has an apparent activation energy of ?1.5 kcal/mole.  相似文献   

2.
The rate constants for proton transfer from H3+ ions to N2, O2, and CO have been measured as function of hydrogen buffer gas partial pressure. The rate constant for proton transfer from H3+ to N2 shows a very large pressure dependence, increasing from 1.0 × 10?9 cm3/s at low H2 partial pressures to 1.7 × 10?9 cm3/s at high H2 partial pressures. The rate constants for proton transfer from H3+ to O2 and CO are constant with partial pressure of H2; giving values of 6.4 × 10?10 cm3/s and 1.7 × 10?9 cm3/s, respectively. The roles of excess vibrational energy in H3+ ions and of equilibrium between forward and back reaction are discussed. Back reaction is observed only for the reaction of H3+ ions with O2, and an equilibrium constant of K = 2.0 ± 0.4 at 298 K has been determined. From these data the proton affinity of O2 is deduced to be 0.47 ± 0.11 kcal/mole higher than that of H2.  相似文献   

3.
The CL spectra of the title reactions and their pressure dependences have been studied over the 5 × 10?6 ? 5 × 10?3 torr range in a beam-gas experiment. In the Sm + N2O, O3 and Yb + O3 reactions simple bimolecular formation of the short lived (radiative lifetime τR < 3 × 10?6 s) MO* emitters dominates the entire pressure range. In the other systems Sm + (F2, Cl2), Yb + (F2, Cl2) the CL spectra are strongly pressure dependent, indicating extensive energy transfer from long-lived intermediates. Reaction mechanisms are suggested. The quantum yields Φ, obtained by calibrating relative quantum yields with Dickson and Zare's absolute value for Sm + N2O [Chem. Phys. 7 (1975) 367], range from Φ = 2.3% (for Sm + F2, the most efficient reaction) down to Φ = 0.005% for Yb + Cl2. The following lower limit estimates were obtained for the product dissociation energies from the short wavelength CL cutoffs: D00(SmF) ? 121.3 ± 2.4 kcal/mole, D00(SmCl) ? ? 100 ± 3 kcal/mole, D00(YbO) ? 94.2 ± 1.5 kcal/moie, D00(YbF) ? 123.7 ± 2.3 kcal/mole.  相似文献   

4.
The rate parameters of the OH + C4H4S (thiophene) reaction were measured at a pressure of 0.5 Torr in the temperature range 293–473 K by the discharge flow EPR method. The reaction was found to exhibit a negative temperature dependence. The data fit the Arrhenius expression k = (1.3 ± 0.8) × 10?13 exp[(1750 ± 200)/T] cm3 molecule?1 s?1. The rate constant of (5 ± 0.4) × 10?11 at room temperature corresponds to a short lifetime of C4H4S in the atmosphere.  相似文献   

5.
The rate constants 〈σ · υ〉 for collisional de-excitation of the metastable 5D states of Ba+ ions have been determined in an ion trap experiment. TheD-states are selectively populated by pulsed laser excitation of the 6P 1/2 or 6P 3/2 state and the decay at different background pressures is monitored by the change in fluorescence intensity of the excited ions. From the pressure dependence of the decay constants we calculate the de-excitation rate constants for different collision partners, averaged over the velocity distribution of the trapped ion cloud. For He, Ne, H2 and N2 we obtain in the c.m. energy range of 0.1–0.5 eV: 〈σ·υ〉 (He)=3.0±0.2·10?13cm3/s, 〈σ·υ〉 (Ne)=5.1±0.4·10?13cm3/s, 〈σ·υ〉 (H2)=3.7±0.3·10?11cm3/s, 〈σ·υ〉 (N2)=4.4±0.3·10?11cm3/s. The results can be understood qualitatively by a consideration of the ion-atom and ion-molecules interaction potential.  相似文献   

6.
A novel-pulsed electrolyte cathode atmospheric pressure discharge (pulsed-ECAD) plasma source driven by an alternating current (AC) power supply coupled with a high-voltage diode was generated under normal atmospheric pressure between a metal electrode and a small-sized flowing liquid cathode. The spatial distributions of the excitation, vibrational, and rotational plasma temperatures of the pulsed-ECAD were investigated. The electron excitation temperature of H Texc(H), vibrational temperature of N2 Tvib(N2), and rotational temperature of OH Trot(OH) were from 4900?±?36 to 6800?±?108 K, from 4600?±?86 to 5800?±?100 K, and from 1050?±?20 to 1140?±?10 K, respectively. The temperature characteristics of the dc solution cathode glow discharge (dc-SCGD) were also studied for the comparison with the pulsed-ECAD. The effects of operating parameters, including the discharge voltage and discharge frequency, on the plasma temperatures were investigated. The electron number densities determined in the discharge system and dc-SCGD were 3.8–18.9?×?1014?cm–3 and 2.6?×?1014 to 17.2?×?1014?cm–3, respectively.  相似文献   

7.
The rate constant for the reaction of CFCl2 with oxygen is measured in the pressure range 0.2–12 Torr using pulsed-laser photolysis and time-resolved mass spectrometry. CFCl2 radicals are generated by photolysis of CFCl3 at 193 nm. The reaction kinetics are recorded by monitoring the build-up of the CFCl2O2 radical concentration. The reaction is in its fall-off region, and the parameters of the relation for the treatment of the fall-off are for M = N2: k(0) = (5.0 ± 0.8) × 10?30 cm6 molecule?2 s?1. k(∞) = (6.0 ± 1.0) × 10?12 cm3 molecule?1 s?1. This value of k(∞) is consistent with results obtained at low pressure taking Fc = 0.6, but the uncertainty in the high-pressure limit is much higher. The results are compared to measurements performed with CH3 and CF3. Estimates of the relative third-body efficiencies of He and N2 are given for CFCl2 and CF3.  相似文献   

8.
Time-resolved mass spectroscopy has been utilized to study the kinetics of methylradical association. The rate coefficient for the association process was determined by following the time dependence of ethane formation after flash photolysis of CH3I in the presence of N2. The net rate coefficient for the process 2CH3 (+M) → C2H6(+M) has a high-pressure limit of (4.0 ± 0.3) × 10?11 cm3 molecule?1 sec?1 at 313°K. This rate coefficient has found to be insensitive to the third-body number densities for pressures ranging from 13 Torr down to below 0.5 Torr, indicating that the lifetime for dissociation of the intermediate C2H6* species is greater than 2 × 10?7 sec at 313°K for a gas pressure of 0.5 Torr.  相似文献   

9.
The rate constant for the reaction between OH and vibrationally excited H2, OH + H2(ν = 1)→H2O + H, has been measured directly at 298 K. k01 is found to be (7.5±3)×10?13 cm3/molecules, corresponding to a vibrational rate enhancement of k01/k00 = (1.2 ± 0.4) × 102.  相似文献   

10.
Triplet vinylidene radicals, produced in the vacuum-ultraviolet photolysis of acetylene, are observed in absorption at 137.4 nm. The lifetime in the presence of helium, for both the protonated and deuterated species, has been determined. Expressed as a bimolecular rate constant the values are kHeH = (1.3 ± 0.3) × 10?14 cm3 molecule?1 s?1 and kHeD = (2.4 ± 0.4 × 10?15 cm3 molecule?1 s?1. An upper limit for removal by acetylene has been deduced.  相似文献   

11.
The rate coefficient for the gas‐phase reaction of chlorine atoms with acetone was determined as a function of temperature (273–363 K) and pressure (0.002–700 Torr) using complementary absolute and relative rate methods. Absolute rate measurements were performed at the low‐pressure regime (~2 mTorr), employing the very low pressure reactor coupled with quadrupole mass spectrometry (VLPR/QMS) technique. The absolute rate coefficient was given by the Arrhenius expression k(T) = (1.68 ± 0.27) × 10?11 exp[?(608 ± 16)/T] cm3 molecule?1 s?1 and k(298 K) = (2.17 ± 0.19) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are the 2σ (95% level of confidence), including estimated systematic uncertainties. The hydrogen abstraction pathway leading to HCl was the predominant pathway, whereas the reaction channel of acetyl chloride formation (CH3C(O)Cl) was determined to be less than 0.1%. In addition, relative rate measurements were performed by employing a static thermostated photochemical reactor coupled with FTIR spectroscopy (TPCR/FTIR) technique. The reactions of Cl atoms with CHF2CH2OH (3) and ClCH2CH2Cl (4) were used as reference reactions with k3(T) = (2.61 ± 0.49) × 10?11 exp[?(662 ± 60)/T] and k4(T) = (4.93 ± 0.96) × 10?11 exp[?(1087 ± 68)/T] cm3 molecule?1 s?1, respectively. The relative rate coefficients were independent of pressure over the range 30–700 Torr, and the temperature dependence was given by the expression k(T) = (3.43 ± 0.75) × 10?11 exp[?(830 ± 68)/T] cm3 molecule?1 s?1 and k(298 K) = (2.18 ± 0.03) × 10?12 cm3 molecule?1 s?1. The quoted errors limits (2σ) are at the 95% level of confidence and do not include systematic uncertainties. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 724–734, 2010  相似文献   

12.
The gas phase reaction kinetics of OH with three di‐amine rocket fuels—N2H4, CH3NHNH2, and (CH3)2NNH2—was studied in a discharge flow tube apparatus and a pulsed photolysis reactor under pseudo‐first‐order conditions in [OH]. Direct laser‐induced fluorescence monitoring of the [OH] temporal profiles in a known excess of the [diamine] yielded the following absolute second‐order OH rate coefficient expressions; k1 = (2.17 ± 0.39) × 10?11 e(160±30)/T, k2 = (4.59 ± 0.83) × 10?11 e(85±35)/T and k3 = (3.35 ± 0.60) × 10?11 e(175±25)/T cm3 molec?1 s?1, respectively, for reactions with N2H4, CH3NHNH2 and (CH3)2NNH2 in the temperature range 232–637 K. All three reactions did not show any discernable pressure dependence on He or N2 buffer gas pressure of up to 530 torr. The magnitude of the weak temperature and the lack of pressure effects of the OH + N2H4 reaction rate coefficient suggest that a simple direct metathesis of H‐atom may not be important compared to addition of the OH to one of the N‐centers of the diamine skeleton, followed by rapid dissociation of the intermediate into products. Our findings on this reaction are qualitatively consistent with a previous ab initio study [ 3 ]. However, in the alkylated diamines, direct H‐abstraction from the methyl moiety cannot be completely ruled out. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 354–362, 2001  相似文献   

13.
The gas-phase reaction of the NO3 radical with NO2 was investigated, using a flash photolysis-visible absorption technique, over the total pressure range 25–400 Torr of nitrogen or oxygen diluent at 298 ± 2 K. The absolute rate constants determined (in units of 10?13 cm3 molecule?1 s?1) at 25, 100, and 400 Torr total pressure were, respectively, (4.0 ± 0.5), (7.0 ± 0.7), and (10 ± 2) for M = N2 and (4.5 ± 0.5), (8.0 ± 0.4), and (8.8 ± 2.0) for M = O2. These data show that the third-body efficiencies of N2 and O2 are identical, within the error limits, and that previous evaluations for M = N2 are applicable to the atmosphere. In addition, upper limits were determined for the rate constants of the reactions of the NO3 radical with methanol, ethanol, and propan-2-ol of ?6 × 10?16, ?9 × 10?16, and ?2.3 × 10?15 cm3 molecule?1 s?1, respectively, at 298 ± 2 K.  相似文献   

14.
Fourier transform ion cyclotron resonance mass spectrometry has been used to measure the reaction rates for ions derived from methylamine with dimethylamine or trimethylamine. The use of the selective ion ejection technique greatly simplifies the elucidation of the ion-molecule reaction channels. The rate constants for proton transfer from protonated metwlamine, CH3NH 3 + (m/z 32), to dimethylamine and trimethylamine are 16.1 ± 1.6 × 10?10 and 9.3 ± 0.9 × 10?10 cm3 molec?1s?1, respectively. The rate constants for charge transfer from methylamine molecular ion, CH3NH 2 + (m/z 31), to dimethylamine and trimethylamine are 9.3 ± 1.8 x 10?10 and 15.0 ± 5 × 10?10 cm3molec?1s?1, respectively.  相似文献   

15.
Strongly enhanced N2 first positive emission N2(B 3Πg → A 3Σ+u) has been observed on addition of N atoms into a flowing mixture of Cl and HN3. The dependence of the emission intensity on N atom concentration gave a rate constant for the reaction N + N3 → N2(B 3Πg) + N2(X 1Σ+g) of i(1.6 ± 1.1) × 10?11 cm3 molecule?1 s?1. That for the reaction Cl + HN3 → HCl + N3 is (8.9 ± 1.0) × 10?13 cm3 molecule?1 s?1 from the decay of the emission. Comparison of the emission intensity in ClHN3 with that in ClHN3N gave the rate constant of the reaction N3 + N3 → N2(B 3Πg) + 2N2(X 1Σ+g) as 1.4 × 10?12 cm3 molecule?1 s?1 on the assumption that N + N3 yields only N2(B 3Πg) + N2(X 1Σ+g).  相似文献   

16.
The kinetics of reactions involving the ground-state azide radical, N3 (X2Πg, have been investigated in a discharge-flow system using mass spectrometric detection with molecular-beam sampling. The following rate constants have been determined at 295 K: Cl + N3Cl → Cl2 + N3,k295 = (1.78 ± 0.26) × 10?12 cm3 s?1 (1σ): N3 + NO → N2O + N2, k295 = (1.19 ± 0.31) × 10.?12 cm3 s?1 (1σ). A method for determining absolute N3 radical concentration is reported.  相似文献   

17.
A jet-stream kinetic technique and the resonance fluorescence method applied to detection of iodine atoms were used to measure the rate constants of the reactions of the IO· radical with the halohydrocarbons CHFCl-CF2Cl (k = (3.2 ± 0.9) × 10?16 cm3 molecule s?1) and CH2ClF (k = (9.4 ± 1.3) × 10?16 cm3 molecule s?1), the hydrogen-containing haloethers CF3-O-CH3 (k = (6.4 ± 0.9) × 10?16 cm3 molecule s?1) and CF3CH2-O-CHF2 (k = (1.2 ± 0.6) × 10?15 cm3 molecule s?1), and hydrogen iodide (k = (1.3 ± 0.9) × 10?12 cm3 molecule s?1) at 323 K.  相似文献   

18.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

19.
The third order rate coefficients for the addition reaction of Cl with NO2, Cl + NO2 + M → ClNO2 (ClONO) + M; k1, were measured to be k1(He) = (7.5 ± 1.1) × 10?31 cm6 molecule?2 s?1 and k1(N2) = (16.6 ± 3.0) × 10?31 cm6 molecule?2 s?1 at 298 K using the flash photolysis-resonance fluorescence method. The pressure range of the study was 15 to 500 torr He and 19 to 200 torr N2. The temperature dependence of the third order rate coefficients were also measured between 240 and 350 K. The 298 K results are compared with those from previous low pressure studies.  相似文献   

20.
The rate constant of the gas-phase reaction Fe(a 5 D 4) + CO2 at 1180–2380 K and a total gas density of (7.0–10.0) × 10?6 mol/cm3 behind incident shock waves is k(Fe + CO2) = 1.4 × 1014.0 ± 0.3exp[?(14590 ± 1100)/T] cm3 mol?1 s?1, as determined by resonance atomic absorption photometry. Using thermochemical data available from the literature, the rate constant of the reverse reaction was calculated to be k(Fe + CO) = 9.2 × 1011.0 ± 0.3 (T/1000)0.57exp[?(490 ± 1100)/T] cm3 mol?1 s?1. The results are compared with data reported earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号