首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crossed nozzle-beam experiment is used to investigate thermal energy collisions: Ne*(2p 53s,3 P 0, 2)+He(1s 2,1 S 0), almost purely elastic, and He*(1s2s,1, 3 S)+Ne(2p 6,1 S 0), in which inelastic excitation transfers occur. State and velocity selection of the scattered Ne* atoms is performed using a tunablecw dye laser frequency locked on a definite Zeeman component of the transition 1s 5→2p 6 (λ=614.3 nm) of20Ne or22Ne. In the purely elastic case, this technique allows the selection of one of the two final velocities, and then an unambiguous LAB-CM transformation. The differential cross section at 62 meV tallies on accords with a calculation using a single effective potential. In He* on Ne collisions, the main inelastic processes are endothermic excitation transfers from He*(21 S). Experimental results obtained at different energies (62, 95, 109, 124 meV) show that the transfers essentially result in levels 3s and 4d of Ne.  相似文献   

2.
The energy spectra of electrons released in thermal energy (≈ 50 meV) ionizing collisions of He*(21 S, 23 S) with H2 have been measured with high resolution and low background. Based on a detailed data analysis, we report accurate H 2 + (v′) vibrational populationsP(v′) for both He*(21 S)+H2(v′=0–10) and He*(23 S)+H2(v′=0–15) and the spectral shapeS(ε) for the individual vibrational peaks. The vibrational populationsP(v′) are quite similar to the Franck-Condon factorsf v ′0 for unperturbed H2(v″=0)→H 2 + (v′) transitions, but, more in detail, the ratiosP(v′)/f v ′0 show a characteristically differentv′-dependence for He*(23 S), He*(21 S), and HeIα(58.4 nm) ionization. The vibrational level separations in the He*(21 S, 23 S)+H2 spectra agree with those in the HeI photoelectron spectrum to within 1–2 meV. The spectral shapesS(ε) are characteristically different for He*(21 S)+H2 and He*(23 S)+H2, reflecting the respective differences in the entrance channel potentials, as determined previously in ab initio calculations and from scattering experiments.  相似文献   

3.
Previously reported potential curves for 0 g ? (3 P 0) and 0 u ? (3 P 0) of Ne2 obtained from large-scale configuration-interaction calculations supplemented by semiempirical spin-orbit calculations are compared with potential curves deduced from experimental studies by Beyer and Haberland. Although the agreement between curves is very good, the assignment of states is opposite.Ab initio spin-orbit coupling matrix elements were calculated based on large CI wavefunctions for states dissociating to Ne + Ne*(3s). It was found that they hardly change between 5 and 20a0.Ab initio spin-orbit corrected potential curves differ little from previous curves relying on the semiempirical treatment of spin-orbit coupling, and all former conclusions remain essentially unchanged.  相似文献   

4.
We have carried out a comprehensive experimental and theoretical investigation of the autoionizing collision systems He*(23 S, 21 S) + He*(23 S). We present high resolution electron energy spectra, obtained with a single He* beam (average relative collision energy 〈E rel〉=1.6 meV) and with crossed He* beams (〈E rel〉> =61 meV). The spectra show substantial structure, and under single beam conditions fast oscillations due to the interference of incoming and outgoing heavy particle waves in the entrance channels are observed. Accurate ab initio potential curves for the seven lowest He*—He*(Σ) molecular states have been obtained from a Feshbach projection scheme, and width functions for He*(23 S) + He*(23 S) have been derived by Stieltjes imaging. Based on these ab initio data, detailed quantum mechanical calculations of the electron spectra have been carried out and provide a thorough understanding of the experimentally observed spectral features. Good overall agreement of the calculated spectra with the experimental data is observed. The close coincidence in the positions of the experimental and theoretical peaks, especially for He*(23 S) + He*(23 S), underlines the reliability of the ab initio potentials. In the He*(21 S) + He*(23 S) electron spectrum, the dominant peak is traced to be due to autoionization from the 23Σ+ g molecular state accessed via an avoided crossing. We also present a detailed discussion of the total ionization cross sections σtot and of the fraction σAItot for associative ionization together with a critical comparison with previous work. The ionization probabilities for close collisions in entrance channels, from which autoionization is spin-allowed, are near unity, and therefore the absolute values and the collision energy dependence of the total cross sections simply reflect the long-range behaviour of the excited state potentials.  相似文献   

5.
We report differential cross section measurements with high angular resolution for different channels of the inelastic processes He++Ne→He++Ne* and He++Ne→He*+Ne+, for collision energies between 100 and 200 eV. For the Ne states (2p 53s)1,3 P 1, which decay optically, we determined the fraction with the alignment at right angles to the scattering plane. The results are used to discuss the mechanism of the processes and the influence of the spin-orbit interaction upon the collision.  相似文献   

6.
Experimental angle-dependent electron energy spectra for the autoionization complex Ne*(3s 3 P 2)+H(12 S), leading to Penning and associative ionization, are reported. The data, measured at thermal collision energies (ē rel~51 meV), clearly show an angular variation of the spectral shape, indicating that electrons with angular momentuml>0 participate in the autoionization process. The corresponding non-isotropic electron emission leads to a correlation between the impact parameter-dependent heavy-particle dynamics and the observed electron energy spectrum at a certain detection angle. The experimental results are qualitatively discussed in connection with previous work on the system He*(23 S)+H(12 S). Furthermore, we present quantum mechanical model-calculations for the electron energy spectrum on the basis of available potential data.  相似文献   

7.
Using crossed beams of metastable rare gas atoms Rg*(ms3 P 2,3 P 0) (Rg=Ne, Ar, Kr, Xe) and ground state sodium atoms Na(3s 2 S 1/2), we have measured the energy spectra of electrons released in the respective Penning ionization processes at thermal collision energies. For Rg*(3 P 2)+Na(3s), the spectra are quite similar for the different rare gases, both in width and shape; they reflect attractive interactions in the entrance channel with well depthsD* e [meV] decreasing slowly from Rg=Ne to Xe as follows: 676(18); 602(23); 565(26); 555(30). For Rg*(3 P 0)+Na(3s), the spectra vary strongly with the rare gas, indicating a change in the character of the interaction from van der Waals type attraction (Ne) to chemical binding for Kr and Xe with well depthsD* e [meV] of: 51(19); 107(25); 432(30); 530(50). These findings are explained through model calculations of the respective potential curves, in which the exchange and the spin orbit interaction in the excited rare gas and the molecular interaction between the two valences-electrons in terms of suitably chosen singlet and triplet potentials are taken into account. These calculations also explain qualitatively the experimental finding that the ratiosq 2/q 0 of the ionization cross sections for Rg*(3 P 2)+Na and Rg*(3 P 0)+Na vary strongly with the rare gas from Ne to Xe as follows: 15.8(3.2); 2.6(4); 1.4(2); 1.6(4).  相似文献   

8.
We have carried out experimental and theoretical studies of Penning ionization processes occurring in thermal energy collisions of state-selected metastable He*(23 S) and He*(21 S) atoms with ground state alkaline earth atoms X(X=Mg, Ca, Sr, Ba). Penning ionization electron energy spectra for these eight systems, measured with a crossed-beam set-up perpendicular to the collision velocity at energy resolutions 40–70 meV, are reported; relative populations of the different ionic X + (ml) states are presented and well depths D*e for the He*+X entrance channel potentials with uncertainties around 25 meV are derived from the electron spectra as follows: He*(23 S)+Mg/Ca/Sr/Ba: 130/250/240/260 meV; He*(21 S) +Mg/Ca/Sr/Ba: 300/570/550/670 meV. The spectra show substantial differences for the three ionic states X +(2 S), X +(2 P) and X +(2 D) and reveal that transitions to a repulsive potential — attributed to He+X +(2 P)2 Σ formation — are mainly involved for the X +(2 P) channel. Ab initio calculations of potential curves, autoionization widths, electron energy spectra and ionization cross sections are reported for the systems He*(23 S)+Ca and He*(21 S)+Ca. The respective well depths D e * are calculated to be 243(15) meV and 544(15) meV; the ionization cross sections at the experimental mean energy of 72 meV amount to 101 Å2 and 201 Å2, respectively. Very good overall agreement with the experimental electron spectra is observed.  相似文献   

9.
Using crossed beams and mass spectrometric ion detection, we have investigated the ionization of argon atoms and dimers in a skimmed supersonic beam by HeI (58.4 nm) and NeI (73.6, 74.4 nm) photons and by He(23,1 S) and state selected Ne(3s 3 P 2,3 P 0) metastable atoms. The cross section ratioq 22/q 1 (i.e. the cross sectionq 22 for formation of Ar 2 + ions from Ar2 divided by the total ionization cross sectionq 1 for Ar atoms), arbitrarily normalized to 1 for HeI impact, is found to vary weakly as follows: HeI/NeI/He(23, 1 S)/Ne(3 P 0)Ne(3 P 2)=1/1.136(9)/0.893(4)/1.034(12)/0.985(9). The results are qualitatively interpreted using available information on the intermolecular potentials and the two different ionization processes. The observation thatq 22/q 1 is 5% larger for Ne(3 P 0) than for Ne(3 P 2) is attributed to anomalies in the respective branching ratios for formation of the Ar+(2 P 3/2)/Ar+(2 P 1/2) ion states in conjunction with differences in the stability of the formed Ar-Ar+(2 P 3/2) and Ar-Ar+(2 P 1/2) molecular ions.  相似文献   

10.
An electron spectrometric study has been performed on HBr using metastable helium and neon atoms as well as helium resonance photons. High resolution electron spectra were obtained for a mixed He(21 S, 23 S) beam, a pure He(23 S) beam, a mixed Ne(3s 3 P 2,3 P 0) beam, and for HeI VUV light. From the comparison of vibrational populations of HBr+ (X, v′) and HBr+ (A, v′), formed by either He* and Ne* Penning ionization (PI) or HeI photoionization, we conclude that HBr+ (X) formation by PI exhibits only little perturbation of HBr potentials, whereas HBr+ (A) formation by PI exhibits substantial bond stretching of HBr due to metastable atom attack preferably from the H end. For He(21 S) + HBr theX- andA-state vibrational peak shapes are substantially broader than for the He(23 S) + HBr case pointing to an additional, charge exchanged interaction (He+ + HBr?) in the entrance channel of the former system which is also responsible for a broad feature found at lower electron energies in the He(21 S, 23 S) induced PI electron spectra. For the first time, we have detected the low energy electrons in both the He(21 S) + HBr and He(23 S) + HBr spectra, associated with the major mechanism for the formation of Br+ ions: energy transfer to repulsive HBr** Rydberg states, dissociating to H(1s) and autoionizing Br** atoms. The HBr+ (X)2 II 3/2:2 II 1/2 fine structure branching ratios vary significantly with the ionizing agent in a similar way as for the isoelectronic, atomic target case krypton.  相似文献   

11.
A crossed beam experiment is used to investigate the Ne*(2p 5 3s,3 P 0, 2) ? H2(1Σ g + ) collision at thermal energy (67 meV). The H2 beam is supersonic, the Ne* beam is thermal. Different collision processes have been analyzed separately by means of a double chopping technique combined with a time of flight measurement. Ions produced by Penning effect and chemi-ionization have been separated from scattered metastable atoms by an accelerating electric field small enough to preserve a reasonable angular resolution: δ?(ions)=±5.5°, δ?(Ne*)=±1°, which allows a determination of differential cross sections. The attenuation method, combined with an absolute measurement of the total H2 flux, has been used to measure the total cross section: σ t =940±220a 0 2 . Differential cross sections have been obtained, in arbitrary but unique unit, for the following processes: (1) elastic collisions, for a mixture (1:3) of para- and ortho-hydrogen; (2) rotationally inelastic collisions:J=0→2; (3) Penning ionization resulting into H 2 + ions; (4) chemiionization yielding NeH+ ions.  相似文献   

12.
The energy spectra of electrons released in thermal energy ionizing collisions of metastable helium and neon atoms with hydrogen iodide have been measured with high resolution and low background. The electron spectra, obtained for a mixed He(21 S, 23 S) beam, a pure He(23 S) beam, and a mixed Ne(3s 3 P 2,3 P 0) beam, are all characterized by the formation of theX 2Π i andA 2Σ+ states of HI+. For both He(21 S) + HI and He(23 S) + HI the spectra exhibit some broad features in the medium electron energy range which are attributed to ionization from an additional charge exchanged potential surface (He+ + HI?) in the entrance channel. For the first time, we have detected the low energy electrons in the He(21 S, 23 S) spectra due to autoionization of I** atoms which result from energy transfer to highly excited, dissociative HI** Rydberg states. The HI+ (X)2Π3/2:2Π1/2 fine-structure branching ratios vary significantly with the ionizing agent in a similar way as for the isoelectronic, atomic target case xenon.  相似文献   

13.
《Chemical physics》1987,115(3):359-379
The velocity dependence and absolute values of the total ionisation cross section for the molecules H2, N2, O2, NO, CO, N2O, CO2, and CH4 by metastable Ne* (3P0) and Ne* (3P2) atoms at collision energies ranging from 0.06 to 6.0 eV have been measured in a crossed beam experiment. State selection of the two metastable states of Ne* was obtained by optical pumping with a cw dye laser. We observe a strongly different velocity dependence at collision energies below about 1 eV for the ionisation cross section of the systems Ne*H2, N2, CO, and CH4, and the systems Ne*O2, NO, CO2, and N2O, respectively. The first group shows an increasing cross section in this energy range, similar to the Ne*Ar system, while the second group shows a very flat behaviour. This behaviour correlates with the difference in character (π or σb) of the orbital of the electron that is removed from the target molecule. For the molecules H2, N2, CO, and CH4 an electron from a σb orbital is removed from the molecule, whereas for O2, NO, N2O, and CO2 an outer π-ortibal electron is involved. For the systems Ne* (3P0, 3P2)H2 we have derived the imaginary part of the optical potential by assuming a real potential similar to the theoretically calculated ground state NaH2 potential of Botschwina et al. The resonance width Γ(r) as a function of the internuclear distance r shows a saturation at small r (r < 2.8 Å) for both the Ne*(3P0)H2 and the Ne*(3P2)H2 interaction. This supports previous conclusions of Verheijen et al. and Kroon et al. Reliable values for the absolute value of the total ionisation cross section have been obtained by performing a careful calibration of the density—length product of the supersonic secondary beam. The results are in good agreement with the values of West et al. for experiments without state selection. The total ionisation cross sections for molecules with π-type ionisation orbitals, with their larger spatial extent, in general are larger than those for molecules with σb-type ionisation orbitals.  相似文献   

14.
Using crossed beams of alkali atoms (Li, Na, K) and state-selected metastable Ne(3s 3 P 2,3 P 0) atoms, we have measured the energy spectra of electrons resulting in the respective Penning ionization processes at thermal collision energies. The spectra are very different for Ne(3 P 2) and Ne(3 P 0): those for Ne(3 P 2) are broad due to a strongly attractive interaction potential with a well depth of 798 (30) meV (Li), 672(20) meV (Na), and 561(20) meV (K), those for Ne(3 P 0) are narrow and compatible with van der Waals type attraction (well depth <50 meV). The Ne(3 P 2) cross section exceeds the one for Ne(3 P 0) by about an order of magnitude.  相似文献   

15.
An electron spectrometric study has been performed on HF using metastable helium and neon atoms as well as helium and neon resonance photons. High-resolution electron spectra were obtained for a pure He(23 S) beam, a mixed He(21 S, 23 S) beam, a mixed Ne(3s,3 P 2,3 P 0) beam, and for HeI and NeI VUV light. From the comparison of vibrational populations of HF+ (X 2£ i ,v′) and HF+ (A 2Σ+,v′) produced by He(23 S) metastables and HeI resonance photons, we conclude that there is only a slight perturbation of the HF (X 1Σ+) potential in He(23 S) Penning ionization; no perturbation is found for HF+ (X 2Π i ,v′) formation from Ne(3 P 2,0) metastable ionization of HF. For He(21 S)+HF theX- andA-ionic state vibrational peak shapes are substantially broader than in the He(23 S)+HF case pointing to an additional, charge exchanged interaction (He++HF?) in the entrance channel of the former system. The vibrational population found for NeI α photoionization of HF for formation of HF+ (X 2Π i ,v′) is found to differ considerably from that for NeI β photoionization and from the Franck-Condon factors for unperturbed HF(X 1Σ+) and HF+ (X 2Π i ) potentials suggesting the presence of an autoionizing superexcited state of HF in the energy vicinity of the NeI α resonance photons. The HF+ (X)2Π3/2:2Π1/2 fine-structure branching ratios vary significantly with the ionizing agent in a similar way as previously found in HCl and HBr.  相似文献   

16.
The excitation-transfer reaction in thermal energy collisions of state-selected metastable Ar*(3P2) and Ar*(3P0) atoms with ground state H atoms, giving excited H*(n = 2) atoms, has been studied with the stationary afterglow technique. The rate constant for the excitation of H atoms by Ar*(3P2) has been found to be more than one order of magnitude larger than in excitation by Ar*(3P0). This difference in the reactivity of two metastable species is explained to be a consequence of the attractive nature of the D(2II) and E(2Σ+) potentials that develop from the Ar*(3P2)+H entrance channel and which give curve crossing with the B(2II) and C(2Σ+ potentials, respectively, leading to the Ar+H*(n=2) exit channel, whereas only a repulsive 4II (Ω=12) potential develops from the Ar*(3P0+H entrance channel.  相似文献   

17.
An electron spectrometric study has been performed on HCl using metastable helium and neon atoms as well as neon resonance photons. High resolution electron spectra were obtained with two different beam apparatuses for a mixed He(21 S, 23 S) beam, a pure He(23 S) beam, and, for the first time, state-selected pure Ne(3s 3 P 2) and pure Ne(3s 3 P 0) beams, and for NeI resonance photons. For the system He(23 S)+HCl the vibrational populationsP(υ′) of the formed HCl+ (X 2 i , υ′) and HCl+ (A 2Ω+, υ′) ions are found to differ from the Franck-Condon factors for unperturbed potentials, indicating slight bond stretching in HCl upon He(23 S) approach. For He(21 S)+HCl the vibrational peak shapes and vibrational populations are substantially different from the He(23 S) case, pointing to an additional, charge exchanged interaction (He++HCl?) in the entrance channel of the former system. For the first time, we have detected the electrons in both the He(21 S)+HCl and He(23 S)+HCl spectra associated with the major mechanism for the formation of Cl+ ions: energy transfer to repulsive HCl** Rydberg states, dissociating toH(1s) and autoionizing Cl**(1 D 2 nl) atoms. For both Ne(3 P 2)+HCl and Ne(3 P 0)+HCl, the populationsP(υ′) of both final molecular states HCl+ (X, A) agree closely with the Franck-Condon factors at the average relative collision energyē coll=55 meV and, for HCl+ (A 2Ω+), also atē coll=130 meV.  相似文献   

18.
The measurement of the collisional cross section for the process Li*(2P)+Cs(6S)→Li(2S)+Cs*(5D) are reported. The technique of resonant Doppler-limited two-photon laser excitation with thermionic detection is applied. The population density of the Cs*5D state is probed by photoionization, and the signals of the Cs(6S)→Cs*(5D) and the Li(2S)→Li*(2P) transitions are compared. The value for cross section of 30 Å2 is measured, with an accuracy of 45%.  相似文献   

19.
The de-excitation rate constants of Ne(3P2, 3P0 and 3P1) by N2 and SF6 were measured using a pulse radiolysis method combined with optical absorption spectroscopy. A new absorption law which relates the relative concentration S of absorbing atoms to the measured transmittance T, i.e. in S = Σ11i = 0aiTi, was used for analyzing the data. The presence of a small amount of SF6 in the sample gas mixtures permitted removal of some artifacts due to thermal electrons for determining the rate constants.  相似文献   

20.
We report an experimental study of energy pooling collisions involving Cs atoms in the 6P and 5D states. The 5D state was populated by a cw dye-laser tuned to the cesium dipole-forbidden transition 6S → 5D at 685.0 nm. The 6P state was populated by subsequent radiative relaxation of the 5D state. The 6P population density was determined from the absorption of a cw diode-laser probe beam. The population densities of the 5D state and the higher, by energy pooling excited states were determined by measuring the corresponding fluorescence intensities relative to the fluorescence intensity from the optically thin quasi-static wings of the cesium D 2 line. The rate coefficient for the process Cs*(6P)+Cs*(6P)→Cs**(6D)+Cs(6S) is found to be (4.2±0.13)×10?10 cm3 s?1 at T=570 K. In addition, estimates of the rate coefficients for the processes Cs*(6P)+Cs*(5D)→Cs**(7D)+Cs(6S) and Cs*(5D)+ Cs*(5D)→Cs**(7F)+Cs(6S) are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号