首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the magnetisation process of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model with modulated couplings over j=1,2,3sites. It turns out that the evolution of magnetisation plateaus depends on j and on the wave number q of the modulation according to the rule of Oshikawa et al. A mapping of two- and three-leg zig-zag ladders on one-dimensional systems with modulated couplings yields predictions for the occurrence of magnetization plateaus. The latter are tested by numerical computations with the DMRG algorithm. Received 14 October 1999 and Received in final form 6 January 2000  相似文献   

2.
We present a class of optimum ground states for quantum spin- models on the Cayley tree with coordination number 3. The interaction is restricted to nearest neighbours and contains 5 continuous parameters. For all values of these parameters the Hamiltonian has parity invariance, spin-flip invariance, and rotational symmetry in the xy-plane of spin space. The global ground states are constructed in terms of a 1-parametric vertex state model, which is a direct generalization of the well-known matrix product ground state approach. By using recursion relations and the transfer matrix technique we derive exact analytical expressions for local fluctuations and longitudinal and transversal two-point correlation functions. Received 1 March 1999  相似文献   

3.
For w-legged antiferromagnetic spin-1/2 Heisenberg ladders, a long-range spin pairing order can be identified which enables the separation of the space spanned by finite-range (covalent) valence-bond configurations into w +1 subspaces. Since every subspace has an equivalent counter subspace connected by translational symmetry, twofold degeneracy, breaking translational symmetry is found except for the subspace where the ground state of w = even belongs to. In terms of energy ordering, (non)degeneracy and the discontinuities introduced in the long-range spin pairing order by topological spin defects, the differences between even and odd ladders are explained in a general and systematic way. Received 19 July 1999 and Received in final form 8 October 1999  相似文献   

4.
Using the density matrix renormalization group technique, we evaluate the low-energy spectrum (ground state and first excited states) of the anisotropic antiferromagnetic spin-one-half chain under magnetic fields. We study both homogeneous longitudinal and transversal fields as well as the influence of a transversal staggered field on the opening of a spin-gap. We find that only a staggered transversal field opens a substantial gap. Received 16 April 2002 / Received in final form 4 July 2002 Published online 17 September 2002  相似文献   

5.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

6.
7.
8.
9.
The tunneling behaviors of the magnetization vector are studied in ferromagnetic systems with trigonal and hexagonal crystal symmetries, respectively. The Euclidean transition amplitudes between the energetically degenerate easy directions are evaluated with the help of the dilute instanton-gas approximation. By using the effective Hamiltonian method, the ground-state tunneling level splittings are clearly shown for each kind of symmetry and are found to depend on the parity of the total spin of the ferromagnetic particle. The effective Hamiltonian method is demonstrated to be equivalent to the dilute instanton-gas approximation. Possible relevance to experiments is discussed. Received: 18 November 1997 / Revised: 18 March 1998 / Accepted: 6 April 1998  相似文献   

10.
We have investigated the ground state phase diagram of the 1D AF spin- Heisenberg model with the staggered Dzyaloshinskii-Moriya (DM) interaction in an external uniform magnetic field H. We have used the exact diagonalization technique. In the absence of the uniform magnetic field (H=0), we have shown that the DM interaction induces a staggered chiral phase. The staggered chiral phase remains stable even in the presence of the uniform magnetic field. We have identified that the ground state phase diagram consists of four Luttinger liquid, staggered chiral, spin-flop, and ferromagnetic phases.  相似文献   

11.
We study the phase diagram of coupled spin-1/2 chains with bilinear and (chiral) three-spin exchange interactions in a magnetic field. The model is soluble on a one-parametric line in the space of coupling constants connecting the limiting cases of a single and two decoupled Heisenberg chains with nearest neighbour exchange only. We give a complete classification of the low-energy properties of the integrable system and introduce a numerical method which allows to study the possible phases of spin ladder systems away from the soluble line in a magnetic field. Received 17 November 1998 and Received in final form 22 January 1999  相似文献   

12.
The phenomenon of quantum nucleation is studied in a nanometer-scale antiferromagnet with biaxial symmetry in the presence of a magnetic field at an arbitrary angle. Within the instanton approach, we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for bulk solids and two-dimensional films of antiferromagnets, respectively. Our results show that the rate of quantum nucleation and the crossover temperature from thermal-to-quantum transitions depend on the orientation and strength of the field distinctly, which can be tested with the use of existing experimental techniques. Received 13 June 2000 and Received in final form 24 October 2000  相似文献   

13.
Large spin systems as given by magnetic macromolecules or two-dimensional spin arrays rule out an exact diagonalization of the Hamiltonian. Nevertheless, it is possible to derive upper and lower bounds of the minimal energies, i.e. the smallest energies for a given total spin S. The energy bounds are derived under additional assumptions on the topology of the coupling between the spins. The upper bound follows from “n-cyclicity", which roughly means that the graph of interactions can be wrapped round a ring with n vertices. The lower bound improves earlier results and follows from “n-homogeneity", i.e. from the assumption that the set of spins can be decomposed into n subsets where the interactions inside and between spins of different subsets fulfill certain homogeneity conditions. Many Heisenberg spin systems comply with both concepts such that both bounds are available. By investigating small systems which can be numerically diagonalized we find that the upper bounds are considerably closer to the true minimal energies than the lower ones. Received 22 October 2002 / Received in final form 4 April 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: jschnack@uos.de  相似文献   

14.
At low temperatures the Neel vector in a small antiferromagnetic particle can possess quantum coherence between the classically degenerate minima. In some cases, the topological term in the magnetic action can lead to destructive interference between the symmetry-related trajectories for the half-integer excess spin antiferromagnetic particle. By studying a macroscopic quantum coherence problem of the Neel vector with biaxial crystal symmetry and a weak magnetic field applied along the hard axis, we find that the quenching of tunnel splitting could take place in the system without Kramers' degeneracy. Both the Wentzel-Kramers-Brillouin exponent and the pre-exponential factors are found exactly for the tunnel splitting. Results show that the tunnel splitting oscillates with the weak applied magnetic field for both the integer and half-integer excess spin antiferromagnetic particles, and vanishes at certain values of the field. All the calculations are performed based on the two sublattices model and the instanton method in spin-coherent-state path integral. Received: 24 July 1997 / Accepted: 30 September 1997  相似文献   

15.
A coherent state representation for the electrons of ordered antiferromagnets is used to derive effective Hamiltonians for the dynamics of holes in such systems. By an appropriate choice of these states, the constraint of forbidden double occupancy can be implemented rigorously. Using these coherent states, one arrives at a path integral representation of the partition function of the systems, from which the effective Hamiltonians can be read off. We apply this method to the t-J model on the square lattice and on the triangular lattice. In the former case, we reproduce the well-known fermion-boson Hamiltonian for a hole in a collinear antiferromagnet. We demonstrate that our method also works for non-collinear antiferromagnets by calculating the spectrum of a hole in the triangular antiferromagnet in the self-consistent Born approximation and by comparing it with numerically exact results. Received: 23 December 1997 / Accepted: 17 March 1998  相似文献   

16.
We calculate the excitation gap, the soliton energy, and the soliton density at finite temperature, of the spin-1/2 one dimensional antiferromagnet coupled to phonons, using a self-consistent harmonic approximation, and the thermal-Green function technique. The spin degrees of freedom are represented by the phase Hamiltonian with the help of the boson representation of the spinless fermions. We estimate the critical field Hc above which begins the incommensurate phase. We also present a theoretical calculation for the specific heat in this phase. We use CuGeO3 as an example of a compound where our theory could be applied. Received 22 October 2002 / Received in final form 21 January 2003 Published online 14 March 2003  相似文献   

17.
The tunneling of a giant spin at excited levels is studied theoretically in mesoscopic magnets with a magnetic field at an arbitrary angle in the easy plane. Different structures of the tunneling barriers can be generated by the magnetocrystalline anisotropy, the magnitude and the orientation of the field. By calculating the nonvacuum instanton solution explicitly, we obtain the tunnel splittings and the tunneling rates for different angle ranges of the external magnetic field ( θ H = π/2 and π/2 < θ H < π). The temperature dependences of the decay rates are clearly shown for each case. It is found that the tunneling rate and the crossover temperature depend on the orientation of the external magnetic field. This feature can be tested with the use of existing experimental techniques. Received 12 March 2001 and Received in final form 18 October 2001  相似文献   

18.
An investigation of the spin excitation spectrum of charge ordered (CO) NaV2O5 is presented. We discuss several different exchange models which may be relevant for this compound, namely in-line and zig-zag chain models with weak as well as strong inter-chain coupling and also a ladder model and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional exchange across the diagonals of V-ladders and the presence of exchange anisotropies on the excitation spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted as anisotropy effect as well as acoustic-optic mode splitting in the weakly coupled chain models. In addition we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong inter-chain coupling, as suggested by recent LDA + U results, an additional high energy optical excitation appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by inelastic neutron scattering. Received 30 April 1999 and Received in final form 5 October 1999  相似文献   

19.
One-dimensional spin 1 systems may have a rich phase diagram including Haldane gap and dimerized phases if the usually very small biquadratic exchange becomes significant. We show that this unlikely condition may be fulfilled in electron systems with quasi-degenerate orbitals. This mechanism may have been experimentally realized in the spin 1 chain LiVGe2O6. The implications for the exploration of the physics and quantum chemistry of spin 1 chains are discussed. Received 4 January 2000  相似文献   

20.
This paper describes the magneto-optical effects of metallic multilayers under the condition of total internal reflection. In the framework of the Green's dyadic technique, we present numerical simulations which account for the variation of the magneto-optical signal with the angle of incidence. The Attenuated Total Reflection (ATR) has become a new technique of characterization for thin films. We show, in this paper, optical effects due to a slight variation of the indice of refraction for thin dielectric films in reflection by the reflectivity and the Kerr rotation spectra of an optimized system. In transmission, this variation is brought to the fore by the near-field intensity spectra. Received 29 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号