首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using octadecyl functional groups (C18) bonded to silica gel as sorbent and methanol as eluent, the flow injection sorbent extraction features of dialkyldithiophosphates (RO)2P(S)S as the chelating agent for cadmium, copper and lead was investigated in respect of the effects of pH, alkyl substituent group, reagent concentration and masking agent, with flame atomic absorption spectrometric detection. The elements are quantitatively extracted with the short-alkyl-chain reagents (R up to propyl) in acidic medium. The extractability decreases with the number of carbon atoms in the alkyl groups of the reagents and with the reagent concentration when the alkyl groups are larger than butyl, but masking agents increase the extractability. An explanation proposed for this effect is the formation of polynuclear chelates. Diethyldithiophosphate can be used for the selective determination of cadmium, copper and lead in digested solid environmental samples. With 20 s sample loading at 8.7 ml min−1, the enhancement factors are 35 for cadmium and copper or 26 for lead; the detection limits (3σ) are 0.8, 1.4 and 10.0 μg 1−1 for cadmium, copper and lead, respectively.  相似文献   

2.
Sayg?n Sönmez 《Talanta》2010,82(3):939-301
Polypyrrole-chloride was studied as a new sorbent for preconcentration of copper(II) using solid-phase extraction prior to determination by flame atomic absorption spectrometry. The sorbent showed an extremely high selectivity towards copper(II) as an anionic chelate, i.e. Cu (pyrocatechol violet)22− in the pH range of 4-7. Copper(II) as Cu (pyrocatechol violet)22− was selectively retained on a column containing 1.0 g of polypyrrole-chloride and quantitatively eluted by 3 mL of 2.0 mol L−1 nitric acid. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. When applied for preconcentration and determination of copper in tap water, waste water and hot spring water, the recoveries were found to be 96, 101 and 95%, respectively, with high precision (% relative standard deviation <4%) and low detection limit (0.87 μg L−1). Verification of the accuracy was carried out by the analysis of a standard reference material (BCR 715 wastewater-SRM). The relative error was +3.33%. The proposed method was successfully applied to the determination of copper in tap water, waste water and hot spring water samples.  相似文献   

3.
The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L−1 HNO3. The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 μg L−1, with a detection limit estimated as 3 μg L−1 at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level.  相似文献   

4.
5.
An on-line system for preconcentration and determination of copper at μg l−1 level by flame atomic absorption spectrometry (FAAS) is proposed. Amberlite XAD-2 functionalized with 3,4-dihydroxybenzoic acid packed in a minicolumn was used as sorbent. Copper(II) ions were sorbed in the minicolumn, from which it could be eluted by hydrochloric acid solution directly to the nebulizer-burner system of the FAAS. Eluent solution was carried by water at a flow rate of 5.00 ml min−1. Signals were measured as peak height by using an instrument software. Achieved sampling rate was 27 samples per hour. Analytical parameters were evaluated and the results demonstrated that copper can be determined, with acetate buffer to adjust the sample pH at 6.0, preconcentration time of 120 s and a sample flow rate of 6.50 ml min−1. The desorption was carried out with 30 μl of a 1.0 mol l−1 hydrochloric acid solution. An enrichment factor of 33 in 13.00 ml of sample (120 s preconcentration time) was achieved by using the time-based technique. The detection limit (DL) (3 s) was 0.27 μg l−1 and the precision (assessed as the relative standard deviation) reached values of 5.7-1.1% in copper solutions of 5.00 to 50.00 μg l−1 concentration, respectively. The accuracy of procedure was confirmed by copper determination in certified reference materials. Recoveries of spike additions (1.0 or 2.0 μg g−1) to food samples were quantitative (90.0-110.0%). These results proved also that the procedure is not affected by matrix interference and can be applied satisfactorily for copper determination in rice flour and starch samples.  相似文献   

6.
A solid-phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the retention of silver on sulfur modified with 2-mercaptobenzoxazole. The retained silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The preconcentration conditions such as pH, amount of reagent loaded on sorbent, type of eluent and its volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range of 3–200 ng mL?1 of Ag+ in the initial solution with r = 0.9985. The limit of detection based on 3Sb was 1.0 ng mL?1. The relative standard deviation for ten replicate measurements of 50 and 150 ng mL?1 of Ag+ was 4.1 and 1.4 %, respectively. The method was applied to the determination of silver in radiology film and water samples.  相似文献   

7.
Iron(III0 has a very effective releasing effect on the depressive interference from copper(II) on the determination of selenium by hydride-generation atomic absorption spectrometry. In solutionwith 100 mg 1?1 Cu(II), 10 μg 1?1 Se(IV) and 2.0 mol l?1 HCl, the absorbance obtained was much higher when 8 g 1?1 Fe(III) was added than for any earlier releasing agent.  相似文献   

8.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

9.
10.
A new Cu(II)-imprinted polymer has been prepared for selective solid-phase extraction of Cu(II) prior to its determination by flame atomic absorption spectrometry. Two functional monomers, 4-(methacryloylamino)benzamide and 4-vinylpyridine, formed a complex with Cu(II) ion through coordination interactions. The self-assembled Cu(II)-monomer complex was copolymerised via bulk polymerisation method in the presence of ethyleneglycoldimethacrylate cross-linker. In order to remove Cu(II) ions, the resulting polymer was washed with 1.0 M HNO3 and then with water until obtaining a neutral pH. The ion imprinted polymer was characterised by Fourier transform infrared. The experimental conditions were optimised for solid-phase extraction of Cu(II) using a column of ion-imprinted polymer (IIP). Quantitative retention was achieved between pH 5.0 and 7.0, whereas the maximum recovery for the non-imprinted polymer (NIP) was about 74% at pH 7.0. The IIP showed higher selectivity to Cu(II) in comparison to the NIP. The IIP also exhibited excellent selectivity for Cu(II) in the presence of other metal ions. The relative standard deviation and limit of detection (3s) of the method were 1.6% and 1.8 µg L?1, respectively. The method was verified by analysis of two certified reference materials (CWW-TM-D and SRM 3280) and then applied to the determination of Cu(II) in seawater and lake water samples and haemodialysis concentrates.  相似文献   

11.
In this work a new device for the direct introduction of solid samples into flame atomizers is proposed. The determination of copper in bovine liver reference material by flame atomic absorption spectrometry (FAAS) using a conventional air–acetylene flame was chosen as an example. Between 0.05 and 0.50 mg of the test sample was weighed directly into a small polyethylene vial connected to a glass chamber. A flow of air carries the test sample as a dry aerosol to a T-shaped quartz cell positioned above the burner in the optical path. The atomic vapor generated produces a transient signal of less than 3-s duration; integrated absorbance is used for signal evaluation. Optimized conditions for air flow rate, flame stoichiometry, etc., were evaluated. There was no statistical difference between the results from the proposed system, compared with those obtained by prior sample digestion and determination by conventional FAAS. No excessive grinding of the samples was required and samples with particle size less than 80 μm were used throughout. Background signals were always low and a characteristic mass of 1.5 ng was found for Cu. The proposed system allows the determination of 60 test samples in 1 h and it can be easily adapted to conventional atomic absorption spectrometers.  相似文献   

12.
Matoso E  Kubota LT  Cadore S 《Talanta》2003,60(6):1105-1111
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters.  相似文献   

13.
A continuous-flow procedure is proposed for the indirect determination of ascorbic acid, based on its reducing properties because of the oxidation of its 1,2-enediol group. Iron(III) was injected into a 1,10-phenanthroline stream, which was mixed with a sample carrier and then with a sodium picrate solution stream. In these conditions the iron(III) was reduced to iron(II) by the ascorbic acid. Thus, the iron(II) formed reacts with 1,10-phenanthroline to form a charged red complex, which with picrate ion forms a stable red-orange uncharged ion-association complex that is adsorbed on-line on a non-ionic polymeric adsorbent (Amberlite XAD-4), proportionally to the ascorbic acid in the sample. The unadsorbed iron was determined by flame atomic absorption spectrometry. The proposed method allows the determination of ascorbic acid in the range 0.5–25 g ml–1 with a relative standard deviation of 2.9% at a rate of ca. 90 samples h–1. This method has been applied to the determination of ascorbic acid in pharmaceutical preparations, fruit juices and sweets. The results obtained in the analysis are compared with those provided by the 2,6-dichloroindophenol method.  相似文献   

14.
In this study, a new device was applied for direct solid sampling flame atomic absorption spectrometry. It was used for trace determination of cadmium in biological samples (bovine and chicken liver). Test samples (0.5 to 7 mg) were weighed into small paper capsules, which were introduced into a quartz cell heated by an air-acetylene flame. Operational conditions for the proposed system were evaluated. There was no significant difference between the results obtained with the proposed system and those obtained after digestion and determination by conventional graphite furnace atomic absorption spectrometry. Good agreement was also obtained with the certified values of two reference materials. Background signals were always low. The characteristic mass was 0.34 ng and relative standard deviation was less than 8%. The limit of detection for the proposed procedure was 1.6 ng or 0.23 μg g 1 if a sample mass of 7 mg was used. Excluding the steps for sample preparation (drying, milling and weighing), the proposed system allows the determination of 40 test samples per hour and it can be easily adapted to conventional flame atomic absorption spectrometers.  相似文献   

15.
本文利用高碘酸钠对相邻羟基氧化作用的专属性,在一定介质中,高碘酸钠与核黄素完全反应后,过量的高碘酸的钠与硝酸铅或者硝酸铜生成沉淀,通过测定Pb<'2+>或者Cu<'2+>,建立了间接测定核黄素含量的方法.铅体系和铜体系测定的相对标准偏差(RSD)分别为4.8%和5.2%,检出限分别为0.6μg.mL<'-1>和0.5μ...  相似文献   

16.
In the present paper, a system for on-line preconcentration and determination of copper by flame atomic absorption spectrometry (FAAS) was developed. It was based on solid phase extraction of copper(II) ions on a minicolumn of Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation process was carried out using Doehlert designs. Four variables (sampling flow rate, SR; elution flow rate, buffer concentration, BC; and pH) were regarded as factors in the optimisation. The parameter “sensitivity efficiency (SE)” proposed in this paper, and defined as the analytical signal obtained for an on-line enrichment system for a preconcentration time of 1 min was used as analytical response in the optimisation process. Using the established experimental conditions, the proposed on-line system allowed determination of copper with detection limit (3σ/S) of 0.23 μg l−1, and a precision (repeatability), calculated as relative standard deviation (R.S.D.) of 3.9 and 3.7% for copper concentration of 5.00 and 20.00 μg l−1, respectively. The preconcentration factor obtained is 62. The recovery achieved for copper determination in presence of several cations demonstrated that this has enough selectivity for analysis of food samples. The robustness of the proposed system was also evaluated. The accuracy was confirmed by analysis of the following certified reference materials (CRMs): Rice flour NIES 10a, Spinach leaves NIST 1570a, Apples leaves NIST 1515 and Orchard leaves NBS 1571. This procedure was applied for copper determination in natural food samples.  相似文献   

17.
用自制的蒸气发生装置,在强还原剂存在下,对铜蒸气的生成进行了详细研究,并通过该装置测定非蒸气发生元素镁和在络合剂掩蔽下测铜两种不同的方法进行了验证。对酸的种类及浓度、NaBH4溶液流速及浓度、反应管道长度的影响等实验参数和干扰情况进行了研究。用该方法测定了面粉中铜的质量分数,检出限为6μg L。  相似文献   

18.
In this paper is proposed a simultaneous pre-concentration procedure using cloud point extraction for the determination of copper and zinc in food samples employing sequential multi-element flame atomic absorption spectrometry (FS-FAAS). The reagent used is 1-(2-pyridylazo)-2-naphthol (PAN) and the micellar phase is obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The optimization step was performed using Box-Behnken design for three factors: solution pH, reagent concentration and buffer concentration. A multiple response function was established in order to get an experimental condition for simultaneous extraction of copper and zinc. Under the optimized experimental conditions, the method allows the determination of copper with a limit of detection (3sigma(b)/S, LOD) of 0.1 microg L(-1), precision expressed as relative standard deviation (R.S.D.) of 2.1 and 1.3% (N=10), for copper concentrations of 10 and 50 microg L(-1), respectively. Zinc is determined with a LOD of 0.15 microg L(-1) and precision as R.S.D. of 2.7 and 1.7% for concentrations of 10 and 50 microg L(-1), respectively. The enhancement factors obtained were 36 and 32 for copper and zinc, respectively. The accuracy was assessed by analysis of certified reference materials, namely, SRM 1567a - Wheat Flour and SRM 8433 - Corn Bran from National Institute of Standards & Technology and BCR 189-wholemeal flour from Institute of Reference Materials and Measurements. The method was applied to the determination of copper and zinc in oats, powdered chocolate, corn flour and wheat flour samples. The copper content in the samples analyzed varied from 1.14 to 3.28 microg g(-1) and zinc from 8.7 to 22.9 microg g(-1).  相似文献   

19.
Various designs of quartz tube in a slotted tube atom trap were examined for improving the sensitivity of flame AAS. A 3.5-fold enhancement in the sensitivity was obtained by using the optimized method. The method was applied to the determination of Cu in cancerous and non-cancerous human thyroid tissues. The Cu concentrations of the cancerous samples tended to increase compared with the non-cancerous samples. Zn concentrations of the same tissues were also determined.  相似文献   

20.
Ekanem EJ  Lori JA  Thomas SA 《Talanta》1997,44(11):2103-2108
A simple and reliable ashing procedure is proposed for the preparation of used lubricating oil samples for the determination of calcium, magnesium, zinc, iron, chromium and nickel by flame atomic absorption spectrometry. Sulphanilic acid was added to oil samples and the mixture coked and the coke ashed at 550 degrees C. The solutions of the ash were analysed by flame AAS for the metals. The release of calcium, zinc, iron and chromium was improved by the addition of sulphanilic acid to samples. The relative standard deviations of metal concentration results in the initial oil samples were 1.5% for Ca (1500 mg l(-1) level), 0.3% for Mg (100 mg l(-1) level), 3.1% for Zn (1500 mg l(-1) level), 0.7% for Fe (500 mg l(-1) level), 0.02% for Cr (50 mg l(-1) level) and 0.002% for Ni (10 mg l(-1) level). The optimum sample size for efficient metal release was 20 g while the optimum sulphanilic acid to oil ratio was 0.05 g per gram of oil for Zn and Cr and 0.10 g for Ca and Fe. Results obtained by this procedure were highly reproducible and comparable with those obtained for the same samples using standard procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号