首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

2.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

3.
A terminally coordinated CO ligand in the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; R = Xyl, 1b; Xyl = 2,6-Me2C6H3), is readily displaced by primary and secondary amines (L), in the presence of Me3NO, affording the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = NH2Et, 4a; R = Xyl, L = NH2Et, 4b; R = Me, L = NH2Pri, 5a; R = Xyl, L = NH2Pri, 5b; R = Xyl, L = NH2C6H11, 6; R = Xyl, L = NH2Ph, 7; R = Xyl, L = NH3, 8; R = Me, L = NHMe2, 9a; R = Xyl, L = NHMe2, 9b; R = Xyl, = NH(CH2)5, 10). In the absence of Me3NO, NH2Et gives addition at the CO ligand of 1b, yielding [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(O)NHEt}(Cp)2] (11). Carbonyl replacement is also observed in the reaction of 1a-b with pyridine and benzophenone imine, affording [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = Py, 12a; R = Xyl, L = Py, 12b; R = Me, L = HNCPh2, 13a; R = Xyl, L = HNCPh2, 13b). The imino complex 13b reacts with p-tolylacetylide leading to the formation of the μ-vinylidene-diaminocarbene compound [Fe2{μ-η12- CC(Tol)C(Ph)2N(H)CN(Me)(Xyl){(μ-CO)(CO)(Cp2)] (15) which has been studied by X-ray diffraction.  相似文献   

4.
The five new silanes C5Me3RSiMenCl3 − n (n = 3, R = i-Pr (5); n = 2, R = i-Pr (6); n = 2, R = s-Bu (7); n = 2, R = cyclohexyl (8); and n = 3, R = t-Bu (9)) were synthesized by reaction of 1-alkyl-2,3,4-trimethylcyclopentadienyl lithium salts with appropriate chlorosilane and characterized by NMR, MS, and IR spectra. At elevated temperatures (250-360 K), all the silanes undergo a non-degenerate sigmatropic silyl rearrangement, which generates non-equivalent structures a and b. The presence of minor structure c was observed in compounds 5 and 7 only. The Diels-Alder cycloaddition of 5 with strong dienophiles tetracyanoethylene (TCNE), and dimethylacetylenedicarboxylate (DMAD) provides compounds 10 and 11, which confirmed isomers a and b, respectively. The free energy of activation of b → a isomerization for compounds 5-8 evaluated from variable temperature NMR spectra show only marginal influence of group R on the 1,2-silyl shift rate. Moreover, in compounds 5 and 7, the process b → a was found significantly faster than b → c process in the above-mentioned temperature range.  相似文献   

5.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

6.
The neutral, octahedral ruthenium vinylidene complexes mer,trans-[(PNN)Cl2Ru(CCHR)] (PNN = N-(2-diphenylphosphinobenzylidene)-2-(2-pyridyl)ethylamine; R = Ph, 1a; R = tBu, 1b) are reported. An X-ray crystallographic study of 1a confirms the tridentate, meridional coordination mode of the PNN ligand. Compounds 1a and 1b undergo regioselective electrophilic addition with HBF4 · Et2O at Cβ of the vinylidene ligand at low temperatures, and are cleanly and quantitatively converted to the ruthenium carbynes mer,trans-[(PNN)Cl2Ru(CCH2R)][BF4] (R = Ph, 2a; R = tBu, 2b). Carbynes 2a and 2b are stable only at low temperatures (<−50 °C). Complex 1a undergoes ligand substitution with L to yield mer,trans-[(PNN)Cl2Ru(L)] (L = MeCN, 3a; L = CO, 3b).  相似文献   

7.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

8.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

9.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

10.
The synthesis of a series of anionic half-sandwich ruthenium-arene complexes [E][RuCl26-p-cymene){PR2(p-Ph3BC6H4)}] (E = Bu4N+: R = Ph, 1a, iPr, 1b or Cy, 1c; E = bis(triphenylphosphine)iminium or PNP+: R = Ph, 1a′, iPr, 1b′ or Cy, 1c′) are reported. X-ray crystallographic studies of 1a′ and 1b′ confirmed the three-legged piano-stool coordination geometry. In solution, complexes 1a-c and 1a-c′ are proposed to form monomer-dimer equilibria as a result of chloride ligand dissociation. Complexes 1a-c and 1a-c′ also form the formally neutral zwitterionic complexes [RuCl(L)(η6-p-cymene){PR2(p-Ph3BC6H4)}] (L = pyridine: R = Ph, 2a, iPr, 2b or Cy, 2c; L = MeCN: R = Ph, 3a, iPr, 3b or Cy, 3c) via chloride ligand abstraction using AgNO3 or MeOTf.  相似文献   

11.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

12.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   

13.
The quinolinylcyclopalladated complexes 3ab were synthesised in good yields (81% and 77%) by the insertion reaction of the prepared dinuclear palladium complexes [Pd(C,N-2-C9H4N-CHO-3-R-6)Cl(PPh3)]2 [(R = H (2a), R = OMe (2b)] with isonitrile XyNC (Xy = 2,6-Me2C6H3). The cyclopalladated complexes 3ab were also obtained in low yields (39% and 33.5%) via a one pot oxidative addition reaction of quinoline chloride 1ab with isonitrile XyNC:Pd(dba)2 (4:1). The reactions of 3ab with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of the complexes to provide the corresponding organic compounds 4ab, 5ab and 6ab in yields (41%, 27% and 18–19%). The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures of 2a, 3a and 3b were determined by X-ray diffraction studies.  相似文献   

14.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

15.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

16.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

17.
Five non-symmetrical PCN pincer palladium(II) complexes [PdCl{C6H3-2-(CHNR)-6-()}] (R = m-ClC6H4, R′ = Ph (2a); R = Ph, R′ = Ph (2b); R = i-Pr, R′ = Ph (2c); R = m-ClC6H4, R′ = i-Pr (2d); R = (S)-1-phenylethyl, R′ = Ph (2e)) have been easily prepared in only two steps from readily available m-hydroxybenzaldehyde and characterized by HRMS, 1H NMR, 13C NMR, 31P NMR and IR spectra. The molecular structures of 2a and 2b have been further determined by X-ray single-crystal diffraction. The obtained Pd complexes were found to be effective catalysts for the Suzuki and copper-free Sonogashira cross-coupling reactions which could be carried out in the undried solvent under air.  相似文献   

18.
We describe reactions of [99mTc(H2O)3(CO)3)]+ (1) with Diels-Alder products of cyclopentadiene such as “Thiele’s acid” (HCp-COOH)2 (2) and derivatives thereof in which the corresponding [(Cp-COOH)99mTc(CO)3)] (3) complex did form in water. We propose a metal mediated Diels-Alder reaction mechanism. To show that this reaction was not limited to carboxylate groups, we synthesized conjugates of 2 (HCp-CONHR)2 (4a-c) (4a, R = benzyl amine; 4b, R = Nα-Boc-l-2,3-diaminopropionic acid and 4c, R = glycine). The corresponding 99mTc complexes [(4a)99mTc(CO)3)] 6a, [(4b)99mTc(CO)3)] 6b and [(4c)99mTc(CO)3)] 6c have been prepared along the same route as for Thiele’s acid in aqueous media demonstrating the general applicability of this synthetic strategy. The authenticity of the 99mTc complexes on the no carrier added level have been confirmed by chromatographic comparison with the structurally characterized manganese or rhenium complexes.Studies of the reaction of 1 with Thiele’s acid bound to a solid phase resin demonstrated the formation of [(Cp-COOH)99mTc(CO)3)] 3 in a heterogeneous reaction. This is the first evidence for the formation of no carrier added 99mTc radiopharmaceuticals containing cyclopentadienyl ligands via solid phase syntheses. Macroscopically, the manganese analogue 5a and the rhenium complexes 5b-c have been prepared and characterized by IR, NMR, ESI-MS and X-ray crystallography for 5a (monoclinic, P21/c, a = 9.8696(2) Å, b = 25.8533(4) Å, c = 11.8414(2) Å, β = 98.7322(17)°) in order to unambiguously assign the authenticity of the corresponding 99mTc complexes.  相似文献   

19.
The McMurry coupling of (tetraphenylcyclobutadiene)cobalt(cyclopentadienyl) ketones, (C4Ph4)Co[C5H4C(O)R], where R = Me, 3a, or Et, 3b, with a range of substituted benzophenones furnished a series of cobaltifens, organometallic analogues of tamoxifen whereby a phenyl ring has been replaced by an organo-cobalt sandwich moiety. These systems of the general formula (η4-C4Ph4)Co[η5-C5H4C(R)C(Ar)Ar′], where R = Me or Et, and Ar = Ar′ = p-C6H4X where X is OH, 2a and 2b, OMe, 2c and 2d, OBn, 2e and 2f, or O(CH2)2NMe2, 12a and 12b, and where Ar = C6H4OH and Ar′ = C6H4O(CH2)2NMe2, 2g and 2h, have been characterised by NMR spectroscopy and/or X-ray crystallography. The effect of 2a and 2b, 2g and 2h, and 12a and 12b on the growth of MCF-7 (hormone-dependent) and MDA-MB-231 (hormone-independent breast cancer cells) was studied. The dihydroxycobaltifens 2a and 2b exhibit a strong estrogenic effect on MCF-7 cells while the aminoalkyl-hydroxycobaltifens, 2g and 2h, were found to be only slightly cytotoxic on MDA-MB-231 cells (IC50 = 27.5 and 17 μM); surprisingly, however, the bis-(dimethylaminoethoxy)cobaltifens, 12a and 12b were shown to be highly cytotoxic towards both cell lines (IC50 = 3.8 and 2.5 μM).  相似文献   

20.
The direct cyclopalladation of 3-methoxyimino-2-(4-chlorophenyl)-3H-indole (1a) and 3-methoxyimino-2-phenyl-3H-indole (1b) results in the regioselective activation of the ortho σ[C(sp2, phenyl)-H] bond affording (μ-OAc)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (2) {R = Cl (2a) or H (2b)} that contain a central “Pd(μ-OAc)2Pd” core. Compounds 2a and 2b reacted with triphenylphosphine (in a molar ratio PPh3:2 = 2) giving [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}(OAc)(PPh3)] (3) {R = Cl (3a) or H (3b)}. Treatment of 2a or 2b with a slight excess of LiCl in acetone produced the metathesis of the bridging ligands and the formation of (μ-Cl)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (4) {R = Cl (4a) or H (4b)} with a central “Pd(μ-Cl)2Pd” moiety. The reactions of 4a or 4b with deuterated pyridine (py-d5) or triphenylphosphine gave the monomeric derivatives [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}Cl(L)] with R = Cl or H and L = py-d5 (5) or PPh3 (6). The crystal structure of 6b·1/2CH2Cl2 confirmed the mode of binding of the ligand, the nature of the metallated carbon atom and a trans-arrangement of the phosphine ligand and the heterocyclic nitrogen. Theoretical calculations on the free ligands are also reported and have allowed the rationalization of the regioselectivity of the cyclopalladation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号