首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tiara Pd(II) thiolate complex, [Pd(SC12H25)2]6, has been synthesized and fully characterized by X-ray single crystal analysis, elemental analysis, MALDI, 1H NMR, powder XRD, IR, Raman, and UV/vis. It was found that, in each complex cluster, the six palladium atoms form a nearly planar hexagonal ring and the adjacent palladium atoms are bridged by sulfur atoms from both sides. Then the complex was further used as a single-source precursor to prepare nearly monodisperse palladium sulfide (PdS) nanoparticles through the high-temperature-induced decomposition in diphenyl ether. The obtained nanoparticles are 2.87 +/- 0.51 nm in diameter and protected by a layer of thiolate species on the surface.  相似文献   

2.
The density functional theory is used to explore alkylthiolates (RS) bonded to Au(111) and gold adatoms on Au(111). Adsorption of RS to adatoms in a structure characterized as an (RSAu)x polymer is strongly preferred over terrace adsorption. The energetic gain upon polymerization is large enough to drive the required Au(111) reconstruction. The results are discussed in relation to thiolate protected gold nanoparticles and homoleptic gold-thiolate complexes.  相似文献   

3.
A simple, cheap, and nonpolluting method was developed for the cloud point extraction of gold (Au) and palladium (Pd). It is based on the complexation reaction of Au and Pd with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and micelle mediated extraction of the complex using the non-ionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (PONPE 7.5). Under the optimized experimental conditions, the enrichment factors are 16 and 17 for Au and Pd, respectively, for 15?mL of preconcentrated solution. The limits of detection are 3.8???g?L?1 and 1.8???g?L?1 for Au and Pd, respectively. The relative standard deviations are 1.4% for Au and 0.6% for Pd (n?=?11). The method was successfully applied to the determination of Au and Pd in certified reference materials and mine samples.
Figure
CPE of gold(III) and palladium(II)  相似文献   

4.
《Comptes Rendus Chimie》2015,18(10):1143-1151
Two series of carbon-supported Pd–Au catalysts were prepared by the reverse “water-in-oil, W/O” method, characterized by various techniques and investigated in the reaction of tetrachloromethane with hydrogen at 423 K. The synthesized nanoparticles were reasonably monodispersed having an average diameter of 4–6 nm (Pd/C and Pd–Au/C) and 9 nm (Au/C). Monometallic palladium catalysts quickly deactivated during the hydrodehalogenation of CCl4. Palladium–gold catalysts with molar ratio Pd:Au = 90:10 and 85:15 were stable and much more active than the monometallic palladium and Au-richer Pd–Au catalysts. The selectivity toward chlorine-free hydrocarbons (especially for C2+ hydrocarbons) was increased upon introducing small amounts of gold to palladium. Simultaneously, for the most active Pd–Au catalysts, the selectivity for undesired dimers C2HxCly, which are considered as coke precursors, was much lower than for monometallic Pd catalysts. Reasons for synergistic effects are discussed. During CCl4 hydrodechlorination the Pd/C and Pd–Au/C catalysts were subjected to bulk carbiding.  相似文献   

5.
光化学合成Au核@Pd壳复合纳米粒子及其表征   总被引:1,自引:0,他引:1  
在PEG-丙酮溶液体系中, 采用紫外光辐射还原Au(Ⅲ), Pd(Ⅱ)离子混合物和以Au晶种为核、紫外光辐射还原Pd(Ⅱ)使其沉积在Au晶种表面上这两种方法, 合成了Au核@Pd壳复合纳米粒子. 通过改变Au(Ⅲ)离子或Au晶种对Pd(Ⅱ)离子的摩尔比调节复合粒子的尺寸和Pd壳厚度, 分别获得了直径范围为5.6~4.6 nm和4.6~6.2 nm的复合粒子. 利用UV-Vis吸收光谱、TEM、HR-TEM和XPS等表征手段, 证明了合成的纳米粒子为核-壳复合结构. 研究了Au@Pd纳米粒子的直径随溶液中Au(Ⅲ)/Pd(Ⅱ)摩尔比的改变而变化的规律; 对Au核向Pd壳的供电子作用以及复合粒子的光化学形成机理进行了讨论.  相似文献   

6.
The anodic oxidation of Au+Pd alloys has been studied in solutions of 1 M H2SO4 and 0.1 M K2SO4 by voltammetric methods. A linear relationship between oxide reduction maximum and bulk alloy composition, often used to determine the surface composition of homogeneous alloys, could be shown to hold only for alloys up to 60 at% gold. At higher gold content the Au oxide peak must be additionally evaluated. With continuous cycling in acid solution the anodic dissolution of Pd, especially from gold-rich places, leads to a rather heterogeneous surface. The O--chemisorption is not governed by a transfer mechanism from Pd to Au surface atoms. The alloys are able to absorb the oxygen species generated in the positive potential region; however, this ability decreases with increase of the gold content.  相似文献   

7.
Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.  相似文献   

8.
In recent years, thiolate‐protected gold nanoclusters (or thiolated Au NCs) with a core size below 2 nm have emerged as a new class of multifunctional nanoparticles because of their unique molecular‐like properties and the potential to use these properties in many practical applications. A general synthesis of Au NCs may involve the use of a strong reducing agent (e.g., sodium borohydride (NaBH4)), which often leads to the formation of mix‐sized Au NCs if no delicate control is applied. To obtain atomically precise Au NCs, additional physical or chemical selection processes (e.g., high‐resolution separation or size‐focusing) are required, which are difficult to be scaled up or are limited to only thermodynamically stable products. By introducing a milder reducing agent – carbon monoxide (CO) – both stable and metastable thiolated Au NCs, including Au10–12, Au15, Au18, Au25, and Au29, can be synthesized in a one‐pot manner. In addition, CO reduction also enables the synthesis of a highly luminescent Au22(SG)18 NC. Furthermore, the intermediates of Au NC growth can be tracked in the CO‐reduction system due to the mild and readily stoppable nature of CO reduction. Therefore, the use of CO reduction may bring new flexibilities in designing synthetic strategies and understanding the growth mechanism of atomically precise Au NCs, which could contribute to a better design of functional Au NCs, further paving their way towards practical applications in various fields.  相似文献   

9.
Various reagents such as Cl2, Br2, I2, benzoyl peroxide and CH3I add to the dinuclear gold(I) amidinate complex [Au2(2,6-Me2Ph-form)2] to form oxidative-addition gold(II) metal–metal bonded complexes. The gold–gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 Å, similar to observations made with dithiolate and ylide ligands. The sodium salt of the guanidinate Hhpp ligand, Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine reacts with (THT)AuCl in THF or CH2Cl2 to form a Au(II) complex, [Au2(hpp)2Cl2], either by solvent oxidation or disproportionation of the Au(I) to Au(II) and the metal. Density functional theory (DFT) and MP2 calculations on [Au2(hpp)2Cl2] find that the highest occupied molecular orbital (HOMO) is predominately hpp and chlorine-based with some Au–Au δ* character. The lowest unoccupied molecular orbital (LUMO) has metal-to-ligand (M–L) and metal-to-metal (M–M) σ* character (approximately 50% hpp/chlorine, and 50% gold). The charge-transfer character of the deeply colored solutions is observed in all the oxidative-addition products of the dinuclear gold(II) nitrogen ligands. This contrasts with the colors of the gold(II) ylide oxidative-addition products which are pale yellow. The colors of the crystalline gold(II) nitrogen complexes are dark orange to brown. This review will focus on the chemistry of gold(II) with nitrogen ligands and compare this with the well reviewed chemistry of gold(II) thiolate and ylide complexes.  相似文献   

10.
Wu Y  Jiang Z  Hu B  Duan J 《Talanta》2004,63(3):585-592
A new method for determination of trace gold (Au), palladium (Pd), and platinum (Pt) in environmental and geological samples by electrothermal vaporization (ETV)-inductively coupled plasma atomic emission spectrometry (ICP-AES) with the use of chelating resin YPA4 as both solid phase extractant and chemical modifier has been developed. The resin loaded with analytes was prepared to slurry and directly introduced into the graphite furnace without any pretreatment. The factors affecting the vaporization behaviors of Au, Pd, and Pt were investigated in detail. It was found that, in the presence of YPA4, Au and Pd could be quantitatively vaporized at lower vaporization temperature of 1900 °C. Compared with the conventional electrothermal vaporization, the vaporization temperature was decreased by 700 °C, and the detection limits for Au and Pd was decreased by a three-fold. However, a little effect of YPA4 on the ETV-ICP-AES determination of Pt was found. Under the optimized conditions, the detection limits (3σ) of Au, Pd, and Pt for this method are 75, 60, and 217 pg, respectively; and their relative standard deviations (R.S.D.) are 4.4, 5.6, and 3.7%, respectively (n=9, C=0.2 μg ml−1). The proposed method has been applied to the determination of trace Pd and Pt in sewage sludge, and the results well agreed with the recommended values. In order to further verify the accuracy of the developed method, a GBW07293 certified geological reference material and an auto catalyst NIST SRM 2557 reference material were analyzed, and the determined values coincided with the certified values very well.  相似文献   

11.
In this paper, we report a facile method to prepare nearly monodisperse Pd nanoparticles by heating Pd(II) ions in 4-tert-butyltoluene solvent, in the presence of oleylamine and trioctylphosphine (TOP) ligands. It has been found the concentration of TOP ligand was highly pivotal for the formation of Pd nanoparticles. Without TOP, only aggregated Pd particles were obtained due to the reduction of Pd(II) by oleylamine. When the molar ratio of TOP to Pd(II) was less than two, well-protected Pd nanoparticles were obtained. However, when the molar ratio reached to two, only Pd(II)–TOP coordination complexes were obtained as the final product. Also, the addition of excess oleylamine as a supplementary protecting ligand has proven to be very important. By controlling the experimental conditions, Pd nanoparticles were obtained by this simple synthetic process, and the average size controllable in the range of 9.5–14.9 nm, with standard deviation in the range of 8–13%.  相似文献   

12.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

13.
We report a NaOH‐mediated NaBH4 reduction method for the synthesis of mono‐, bi‐, and tri‐thiolate‐protected Au25 nanoclusters (NCs) with precise control of both the Au core and thiolate ligand surface. The key strategy is to use NaOH to tune the formation kinetics of Au NCs, i.e., reduce the reduction ability of NaBH4 and accelerate the etching ability of free thiolate ligands, leading to a well‐balanced reversible reaction for rapid formation of thermodynamically favorable Au25 NCs. This protocol is facile, rapid (≤3 h), versatile (applicable for various thiolate ligands), and highly scalable (>1 g Au NCs). In addition, bi‐ and tri‐thiolate‐protected Au25 NCs with adjustable ratios of hetero‐thiolate ligands were easily obtained. Such ligand precision in molecular ratios, spatial distribution and uniformity resulted in richly diverse surface landscapes on the Au NCs consisting of multiple functional groups such as carboxyl, amine, and hydroxy. Analysis based on NMR spectroscopy revealed that the hetero‐ligands on the NCs are well distributed with no ligand segregation. The unprecedented synthesis of multi‐thiolate‐protected Au25 NCs may further promote the practical applications of functional metal NCs.  相似文献   

14.
《Comptes Rendus Chimie》2003,6(8-10):979-987
Well-defined planar 1D chains and 2D superlattices of gold (Au) nanoparticles in the 1.5~9.7 nm range were successfully fabricated by a self-assembly technique. When the nanoscale ridge-and-valley structured carbon substrates were dipped in toluene solution of 3.4-nm Au nanoparticles followed by a natural dry, a planar array of 1D chains of Au nanoparticles were formed at the valleys of carbon substrates. On the other hand, the 1.5~9.7-nm Au nanoparticles protected by alkanethiols or 2,6-bis(1'-n-thioalkyl)benzimidazol-2-yl)pyridine easily formed hexagonal 2D superlattices on the flat carbon substrates, the inter-particle spacing being tuned by the ligand length and so on. It was found that for 2D superlattices consisting of large particles of ~5 nm the electron behavior was dominated by the Coulomb blockade effect at low temperature while the I–V response was ohmic at room temperature.  相似文献   

15.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

16.
Extraction of platinum group metals and gold from hydrochloric acid solutions with calix[4]arenamines (CAA) and calix[n]arene thioethers (n = 4, 6; CTE) was studied. The high macrocyclic effects (102–103) are due to chelation between metals and the donor centers of macrocycles in the systems CAA-Pd and CTE-Ag, PtII, and PtIV. New CAA-based extracting systems for collective extraction of Pd, Pt, Au, Ir, and Rh and new CTE-based systems for separation of Au and Pd from Ag and Pt were justified.  相似文献   

17.
The Stark FWHM (Full-Width at Half of the Maximal line intensity, W) of 5 neutral and 26 singly ionized gold (Au I and Au II, respectively) spectral lines have been measured in laboratory helium plasma at approximately 16,600 K electron temperature and 7.4 × 1022 m− 3 electron density. Five Au I and ten Au II W values are reported for the first time. The Au II W values are compared with recent theoretical data, calculated based on a modified semi-empirical approach, and also with existing experimental W values. Our normalized Stark widths are six times higher than those measured in a laser-produced plasma. Possible explanation of this is recommended here. An agreement (within the accuracy of the experiment and uncertainties of the theoretical approach used) with the recently calculated W data was found in the 6p–7s Au II transition. The calculated hyperfine splitting for the five Au II lines in the 6s–6p transition is also presented. At the stated helium plasma conditions, Stark broadening has been found to be the dominant mechanism in the Au I and Au II line shape formation. A modified version of the linear low-pressure pulsed arc was used as a plasma source operated in helium, with gold atoms as impurities evaporated from the thin gold cylindrical plates located in the homogeneous part of the discharge, providing conditions free of self-absorption. This plasma source ensures good conditions for generation of excited gold ions due to Penning and charge exchange effects.  相似文献   

18.
19.
A new poly(acrylamidrazone-hydrazide) chelating fiber has been synthesized using polyacrylonitrile fiber as a starting material. An ICP-OES method for applying the fiber to preconcentrate and separate trace Au(III) and Pd(IV) ions in solution has been established. The experiments show that 8 ng/ml Au(III) and 6 ng/ml Pd(IV) in 1000 ml of solution can be enriched quantitatively by the fiber column at a flow rate of 12 ml/min at pH 2. These ions can be desorbed quantitatively with 10 ml of 2.5% CS(NH2)2 + 6% H2SO4 containing 0.2% Fe(II) from the column at an elution rate of 6 ml/min. A fiber treated with 12M HCl or 15M HNO3 can be re-used 10 times with above 95% recoveries of Au(III) and Pd(IV), and 120–800-fold excesses of Cu(II), Mn(II), Fe(III), Al(III), Ni(II), Mg(II) and Ca(II) ions cause little interference. The RSDs are 2.0% for 8 ng/ml Au and 3.5% for 6 ng/ml Pd. The recovery of added standard in a solution sample from a metal smelter is 96.2% for Au and 100% for Pd, and the content of each ion in the sample determined by the method is in agreement with the analysed value from the smelter laboratory.  相似文献   

20.
Herein we describe a protocol that generates Au icosahedra in high yields by simply mixing aqueous solutions of HAuCl4 and N‐vinyl pyrrolidone. Our mechanistic study reveals that water plays an important role in this synthesis: as a nucleophile, it attacks the gold–vinyl complex, leading to the production of an alcohol‐based AuI intermediate. This intermediate then undergoes a redox reaction in which AuI is reduced to Au0, leading to the formation of Au atoms and then Au icosahedra of about 18 nm in size at a yield of 94 %, together with a carboxylic acid in the final product. This new protocol has also been employed to prepare multiply twinned nanoparticles of Ag (15–20 nm in size), spherical aggregates (25–30 nm in size) of Pd nanoparticles, and very small nanoparticles of Pt (2 nm in size). Since no organic solvent, surfactant, or polymer stabilizer is needed for all these syntheses, this protocol may provide a simple, versatile, and environmentally benign route to noble‐metal nanoparticles having various compositions and morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号