首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In this paper, ZnSe nanoparticles, which were modified with mercaptoacetic acid (MAA), worked as novel fluorescence sensors for the quantitative determination of copper(II) and nickel(II). Under the optimal conditions, the fluorescence intensities of functionalized ZnSe nanoparticles were quenched by the addtion of copper(II) or nickel(II) ions, there were linear relationships between the relative fluorescence intensity (logF0/F) and the concentration in the range of 140–2,000 μg/L for copper(II) (R = 0.9973) and 30–1,000 μg/L for nickel(II) (R = 0.9992), the limits of detection were 50 μg/L and 5 μg/L, respectively.  相似文献   

2.
Plasma parameters in the upgraded Trimyx-M Galathea   总被引:1,自引:0,他引:1  
Results are presented from measurements of the plasma parameters in the upgraded Trimyx-M Galathea. After the barrier magnetic field and the energy of the injected hydrogen plasma bunch were increased to B bar ∼ 0.1 T and W 0 ≈ 200 J, respectively, the following plasma parameters were achieved: the density n ∼ 5 × 1013 cm−3, the plasma confinement time τ* = 800–900 μs, the elergy of the confined plasma W 1 ∼ 100 J, the ratio of the plasma pressure to the barrier magnetic pressure β 0 ∼ 0.2, the electron temperature T e ∼ 20 eV, and the ion temperature T i ∼ 2T e . The maximum time during which the plasma density decreased e-fold, τ p , was found to be 300 μs at B bar = 0.1 T, which agrees with the classical transport model.  相似文献   

3.
Two component (ethidium bromide–caffeine, ethidium bromide–DNA) and three component (ethidium bromide–caffeine–DNA) systems in aqueous saline (0.01 M NaCl) phosphate buffer solutions (pH 6.86, T = 298 K) are studied spectrophotometrically. The equilibrium constants for dimerization of caffeine, K D  = 1.22 ± 2 M−1, and for heteroassociation of ethidium bromide with caffeine, K = 71 ± 8 M−1, in ethidium bromide–caffeine systems are determined. When the concentration of caffeine is increased, the dynamic equilibrium of the solution shifts toward formation of heterocomplexes which are, presumably, stabilized by dispersive and hydrophobic interactions of chromophores. The equilibrium parameters for ethidium bromide complex formation with DNA are calculated: the coupling constant for the dye with the biopolymer, K 1 = (232 ± 16)⋅103 M−1, and the number of base pairs of the biopolymer participating in bonding with the ligand, n 1 = 3.6 ± 0.2, are calculated. Given these values, it is suggested that under these experimental conditions there are two types of bonding between ethidium bromide and the nucleic acid — intercalation and “external” bonds. A McGhee–von Hippel model for a three component system and the numerical values of the parameters for molecular complex formation in two component systems are used to calculate the bonding constant for caffeine with DNA, K 2 = 127 ± 30 M−1, and the number of base pairs of DNA which bond with caffeine, n 2 = 1.7 ± 0.2. The concentrations of ethidium bromide and caffeine in the composition of two and three component complexes are calculated as functions of the nucleic acid content in the solution. An analysis of the concentration dependences shows that heteroassociation of ligands has a significant effect on the reduction in the concentration of ethidium bromide–DNA complexes in a three component system for low DNA concentrations, while at high DNA concentrations the bonding of caffeine with the biopolymer has this effect. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 143–151, January–February 2009.  相似文献   

4.
Features of light pulse propagation and nonlinear optical transformation of the spectrum generated by titanium-sapphire laser pulses (τ0.5 = 27 fs, λ0 = 790 nm) have been studied experimentally in a 50-cm cylindrical hollow waveguide (microcapillary with 280-μm diameter core) filled with gaseous molecular nitrogen and helium. Stable guided propagation of light pulses with an intensity of ~1.5⋅1014 W/cm2 in the fundamental EH11 mode of the gas-filled capillary has been demonstrated. Exact focusing of the laser light made it possible to obtain rather high relative (≥95%) and absolute (~60%) energy transmission efficiencies for the pulses at gas pressures equal to or lower than 760 Torr. A method to determine the nonlinear phase shift of the pulses has been proposed. Values of the nonlinear refractive index n2 ≈ 4.5⋅10–23 cm2/(W⋅Torr) (N2) and n2 ≈ 2.8⋅10–23 cm2/(W⋅Torr) (He) have been found. A short-wavelength shift in addition to the Kerr nonlinearity has been shown to be contributed by the generated electron plasma at high pulse intensities (≥1014 W/cm2).  相似文献   

5.
LiCoO2 thin films were prepared by electron beam evaporation technique using LiCoO2 target with Li/Co ratio 1.1 in an oxygen partial pressure of 5 × 10−4 mbar. The films prepared at substrate temperature T s < 573 K were amorphous in nature, and the films prepared at T s > 573 K exhibited well defined (104), (101), and (003) peaks among which the (104) orientation predominates. The X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) data revealed that the films prepared in the substrate temperature range 673–773 K are nearly stoichiometric. The grain size increases with an increase of substrate temperature. The Co–eg absorption bands, are empty and their peak position lies at around 1.7 eV above the top to the Co–t2g bands. The fundamental absorption edge was observed at 2.32 eV. The films annealed at 1,023 K in a controlled oxygen environment exhibit (104) out plane texture with large grains. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006  相似文献   

6.
A spectroscopic study of ambient air plasma, initially at room temperature and pressures ranging from 32 to 101 kPa, produced by high-power transverse excitation atmospheric (TEA) CO2 laser (λ=9.621 and 10.591 μm; τ FWHM≈64 ns; power densities ranging from 0.29 to 6.31 GW cm−2) has been carried out in an attempt to clarify the processes involved in laser-induced breakdown (LIB) air plasma. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited N, O and ionic fragments N+. The medium-weak emission is due to excited species O+, N2+, O2+, C, C+, C2+, H, Ar and molecular band systems of N 2+(_{2}^{+}( B 2\varSigma u+^{2}\varSigma _{\mathrm{u}}^{+} –X 2\varSigma g+)^{2}\varSigma _{\mathrm{g}}^{+}) , N2(C3 Π u–B3 Π g), N 2+(_{2}^{+}( D2 Π g–A2 Π u) and OH(A2 Σ +–X2 Π). Excitation temperatures of 23400±700 K and 26600±1400 K were estimated by means of N+ and O+ ionic lines, respectively. Electron number densities of the order of (0.5–2.4)×1017 cm−3 and (0.6–7.5)×1017 cm−3 were deduced from the Stark broadening of several ionic N+ and O+ lines, respectively. Estimates of vibrational and rotational temperatures of N 2+_{2}^{+} electronically excited species are reported. The characteristics of the spectral emission intensities from different species have been investigated as functions of the air pressure and laser irradiance. Optical breakdown threshold intensities in air at 10.591 μm have been measured.  相似文献   

7.
Laser-induced breakdown spectroscopy (LIBS) in germane (GeH4), initially at room temperature and pressures ranging from 2 to 10 kPa, was studied using a high-power transverse excitation atmospheric (TEA) CO2 laser (λ=10.653 μm, τ FWHM=64 ns and power densities ranging from 0.28 to 5.52 GW cm−2). The strong emission spectrum of the generated plasma is mainly due to electronic relaxation of excited Ge, H and ionic fragments Ge+, Ge2+ and Ge3+. The weak emission is due to molecular bands of H2. Excitation temperatures of 8100±300 K and 23,500±2500 K were estimated by Ge atomic and Ge+ singly ionized lines, respectively. Electron number densities of the order of (0.7–6.2)×1017 cm−3 were deduced from the Stark broadening of several atomic Ge lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the germane pressure and laser irradiance. Optical breakdown threshold intensities in germane at 10.653 μm have been determined. The mechanism of initiation of the laser-induced plasma in germane has been analyzed.  相似文献   

8.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

9.
Absorption and fluorescence spectra of octupolar centrosymmetric oligophenylenevinylene dyes (E,E)-bis[2-(4-hexyloxyphenyl)ethenyl]-(E,E)-3,6-bis-[2-(4-N,N-dipropylaminophenyl)ethenyl]pyrazine and (E,E,E,E)-2,3,5,6- tetra-[2-(4-hexyloxyphenyl)ethenyl]pyrazine were measured in various solvents. An electro-optical absorption method was used to determine their dipole moments as μ g  = 6.1∙10–30 and 3.4∙10–30 C∙m in the equilibrium ground state and the increased values a μ = 11.9∙10–30 and 8.2∙10–30 C∙m upon excitation into a Franck–Condon state. Quantum-chemical calculations showed that the molecules had non-planar configurations. The π,π-conjugated system was localized on the most planar part of the molecule that was responsible for light absorption in the range 300–450 nm due to a change in the geometry of the molecules in the ground state. Localized excitation of the molecules caused their dipole moments a μ to change significantly.  相似文献   

10.
It is found that over a wide range of temperatures and magnetic fields even a small concentration of magnetic impurities in a sample leads to a T −1 temperature dependence of the nuclear heat capacity. This effect is due to nuclear spin polarization by the magnetic impurities. The parameter that controls the theory turns out not to be the impurity concentration n imp but instead the quantity n imp μ e /μ n , where μ e and μ n are the magnetic moments of an electron and a nucleus, respectively. The ratio of μ e and μ n is of order of 103. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 5, 341–345 (10 September 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

11.
A method of calculating the effective deformation-potential constant E 1 for holes and longitudinal acoustic phonons in isotropic polycrystalline silicon is suggested. The deformation-potential constant E 1 is estimated through the deformation potentials a, b, and d of the silicon single crystal. The procedure of averaging of the squared modulus of the hole and acoustic phonon interaction Hamiltonian written in the plane wave basis over the polycrystal ensemble provides the basis for calculation of the constant E 1 . It is demonstrated that for T = 200–600 K, hole concentration p = (5.0–10.0)∙1019 cm–3, and crystallite size d = 300–3000 ?, the deformationpotential constant E 1 is independent of the hole concentration p, temperature T, and crystallite size d.  相似文献   

12.
A. Kahoul  A. Hammouche 《Ionics》2010,16(2):105-109
This investigation is a contribution to the research on alternative cathode materials with much more promising performances for lithium batteries. It deals with the electrochemical properties of iron phosphate compound FePO4, chemically prepared through the so-called sol–gel Pechini process, terminated by a calcination of the product precursor at temperatures (T c) ranging between 350°C and 650°C. A crystalline phase was obtained for temperatures ≥400°C. The particle size decreased with the decrease in T c, giving rise to a Brunauer–Emmett–Teller (BET)-specific surface area, S BET, as high as 28 m2 g−1 for the sample annealed at 400°C. The electrochemical properties of FePO4-based composite cathodes were characterized on three-electrode laboratory cells. Charge–discharge cycling determined a maximum reversible capacity of 132 mAh g−1, which fell with the increase in T c. A direct correlation was established between the activity of the material and its active surface area.  相似文献   

13.
The electron-electron, electron-ion, ion-ion and charge-charge static structure factors are calculated for alkali (at T = 30 000 K, 60 000 K, n e = 0.7 × 1021 ÷ 1.1 × 1022 cm-3) and Be2+ (at T = 20 eV, n e = 2.5 × 1023 cm-3) plasmas using the method described by Gregori et al. The dynamic structure factors for alkali plasmas are calculated at T = 30 000 K, n e = 1.74 × 1020, 1.11 × 1022 cm-3 using the method of moments developed by Adamjan et al. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the repulsion due to the Pauli exclusion principle. The repulsive part of the Hellmann-Gurskii-Krasko (HGK) potential reflects important features of the ion structure. Our results on the static structure factors for Be2+ plasma deviate from the data obtained by Gregori et al., while our dynamic structure factors are in a reasonable agreement with those of Adamyan et al.: at higher values of k and with increasing k the curves damp down while at lower values of k, and especially at higher electron coupling, we observe sharp peaks also reported in the mentioned work. For lower electron coupling the dynamic structure factors of Li+, Na+, K+, Rb+ and Cs+ do not differ while at higher electron coupling these curves split. As the number of shell electrons increases from Li+ to Cs+ the curves shift in the direction of low absolute value of ω and their heights diminish. We conclude that the short range forces, which we take into account by means of the HGK model potential, which deviates from the Coulomb and Deutsch ones, influence the static and dynamic structure factors significantly.  相似文献   

14.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

15.
Magnetic properties and magnetocaloric effects (MCEs) have been investigated in hydrogenated LaFe11.7 Si1.3H x (x=0,1.37, and 2.07) compounds. It is found that the Curie temperature, T C, can be tuned from 192 to 338 K by adjusting the hydrogen content from 0 to 2.07. It is attractive that both thermal and magnetic hysteresis are remarkably reduced because of the weakness of the itinerant-electron metamagnetic transition after hydrogenation. The maximal hysteresis loss at T C decreases from 33.4 to 8.8 J/kg as x increases from 0 to 2.07. For the samples with x=0,1.37, and 2.07, the maximal values of the isothermal magnetic entropy change, ΔS M, are 20.9, 15.1, and 15.83 J/kg K for the increasing field and 20.76 J/kg K, 14.53 J/kg K and 15.61 J/kg K for the decreasing field at T C, with efficient refrigeration capacities of 439, 330, and 304 J/kg for a field change of 0–5 T, respectively. Large reversible MCE and small hysteresis with considerable refrigeration capacity indicate the potential of LaFe11.7Si1.3H x hydride as a candidate magnetic refrigerant around room temperature.  相似文献   

16.
The linear sigma model at finite isospin chemical potential μ and temperature T is systematically studied by means of the Cornwal–Jackiw–Tomboulis (CJT) effective potential calculated in the improved Hartree–Fock (HF) approximation, where the Goldstone theorem and the thermodynamic consistency are respected. It results that in the chiral limit, for μ=0 the chiral phase transition is second order as expected from the general universality arguments, and for μ≠0 the phase diagram for the pion condensation in the (T,μ) plane exhibits a tricritical point which is crossover from first-order to second-order phase transitions. In the physical world, where the chiral symmetry is explicitly broken, the pion condensation occurs at μ=m π , the pion mass in vacuum, and its phase diagram is basically in agreement with those found from the chiral perturbation theory. The chiral symmetry gets restored at high values of T for fixed μ and of μ for fixed T.  相似文献   

17.
Surface acoustic wave (SAW) delay lines without gas-sensitive coatings are used as thermal sensors for the thermoconductometric detection of gases and gas flows. The forced convection of 13 gases is analyzed in the linear approximation without regard for their interaction with the environment. Quartz, LiNbO3, Bi12GeO20, and Bi12SiO20 delay lines are used to detect H2, He, Ar, CH4, NH3, N2, and O2 at frequencies f=21–263 MHz and temperatures T=25–165 °C. The SAW “response” is measured as a function of the gas concentration n, the flow rate U, the temperature coefficient of the SAW velocity (TCV), and the working temperature T p . The feasibility of controlling the level of the gas “response” and imparting selectivity to the choice of TCV and T p is demonstrated. The threshold gas concentrations are 0.35% for CH4 and 0.1% for H2 and NH3 in nitrogen. A linear response is obtained in the interval U=20–200 ml/min. Zh. Tekh. Fiz. 67, 119–123 (May 1997)  相似文献   

18.
VUV emission model of a hygrogen plasma with oxygen impurity (T e=tens of eV,n e 1014–1016 cm–3,nimp=1–3 % ne) is constructed in order to judge different possibilities of plasma diagnostics (especiallyT e measurements) in the REBEX experiments. Two sets of calculations based on the nonstationary corona model are performed: time dependent continuous and line spectra in the range 5 eV—5 keV in the constantT e approximation (discussion ofT e measurements by the filter-method) and time dependent intensities of selected spectral lines (2s-2p type) of ionsO 2+–O5+ at variableT e (including plasma heating by REB and radiative cooling). A possibility of plasma energy content determination from radiation losses is shown.We would like to acknowledge many helpful discussions with dr. P. unka; we thank also dr. J. Ullschmied for comparing our results with diamagnetic measurements.  相似文献   

19.
We present the results of an experimental study of the ablation spectral energy thresholds for a number of polymer materials ((C2F4) n , (CH2O) n ) exposed to femtosecond (τ0.5 ~ 45–70 fs) laser pulses (λ ~ 266, 400, 800 nm) under atmospheric conditions and under vacuum (p ~ 10–2 Pa). We have analyzed the energy thresholds and the efficiency of optical, thermophysical, and gasdynamic processes in laser ablation vs. the laser pulse duration and photon energy.  相似文献   

20.
A rapid, simple and highly sensitive second derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixture of cinnarizine (CN) and domperidone (DOM). The method is based upon measurement of the native fluorescence of these drugs at Δλ = 80 nm in aqueous methanol (50% V/V). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.1 to 1.3 μg mL−1 and 0.1–3.0 μg mL−1 for CN and DOM, respectively with lower detection limits of 0.017 and 5.77 × 10−3 μg mL−1 and quantification limits of 0.058 and 0.02 μg mL−1 for CN and DOM. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the synchronous fluorometric method allowed the determination of CN in real and spiked human plasma. The mean % recoveries in case of spiked human plasma (n = 3) were 96.39 ± 1.18 while that in real human plasma (n = 3) was 104.67 ± 4.16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号