首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A novel magnetic rhodium catalyst was prepared through immobilizing Wilkinson's catalyst on the surface of silica‐coated iron oxide nanoparticles. After (thio)diphenylphosphine (─S&─PPh2) was modified on the surface of the silica‐coated iron oxide nanoparticles, tris(triphenylphosphine)rhodium(I) chloride was employed to synthesize the Rh(Cl)(PPh3)2(Ph2P&─S&─) complex, affording a rhodium loading of 0.16 mmol g−1. The Rh(I) organometallic magnetic nanoparticles form a novel class of heterogeneous catalyst which is particularly suitable for the practice of organic synthesis. The prepared system exhibits high catalytic efficiency in Suzuki–Miyaura and Miyaura–Michael reactions in ethanol–water solution. High yield, low reaction times, use of green solvents and non‐toxicity of the catalyst are the main merits of this protocol. Also, magnetic separation is an environmentally friendly alternative for the recovery of the catalyst, since it minimizes energy and catalyst loss by preventing mass loss and oxidation. The produced catalyst was characterized using a variety of techniques.  相似文献   

5.
Hydrogen species in both SiO2 and Rh/SiO2 catalysts pretreated in different atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of 1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at -7.0, 3.8-4.0, 2.0 and 1.5-1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2 lattice, respectively. Besides the above signals, both upfield signal at -110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at -110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be p hydrogen and in a unique form of "delocalized hydrogen". It wa  相似文献   

6.
The catalyst precursor preparedin situ from rhodium dimer [Rh(cod)Cl]2 and a new water-soluble phosphine Ph2PCH2CH2CONHC(CH3)2CH2SO3H (in Li+ salt form) has been found to act as an effective olefin hydrogenation catalyst. Catalytic hydrogenation reactions have been tested in either two phase: aqueous catalyst/insoluble olefin or methanolic catalyst/olefin systems. The observed reaction rates were higher for terminal than for internal olefins. 1-Hexene in methanolic solution has been hydrogenated with a turnover frequency of about 8000 h–1. This system has also been applied in the form of a supported aqueous phase catalyst.  相似文献   

7.
A thermoregulated phase‐transfer (TRPT) Rh(I) complex catalyst A prepared from Rh(acac)(CO)2 and a thermoregulated ligand CH3(OCH2CH2)mPPh2 (Mw = 918) was applied to the biphasic hydroformylation of 1‐octene, and a high activity with an aldehyde yield of 97.5% was demonstrated. After three recycling steps, the aldehyde yield gradually decreased. Transmission electron microscopy (TEM) revealed that after the first cycle Rh colloids were generated in situ in the aqueous phase, and in subsequent runs Ostwald ripening occurred. An independently prepared colloidal Rh(0) TRPT catalyst D also exhibited high hydroformylation activity under identical experimental conditions, and after two times of recycling an activity decrease was also observed. It is suggested that in situ from Rh(acac)(CO)2 colloidal Rh particles are generated, which demonstrate thermomorphic behaviour and a high hydroformylation activity. Subsequently, agglomeration processes result in an activity decay, as observed in the TRPT Rh(I) complex catalyst system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from [Rh(C(2)H(4))(2)(CH(3)COCHCOCH(3))] and a crystalline support, dealuminated Y zeolite, giving {Rh(C(2)H(4))(2)} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by (13)C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra.  相似文献   

10.
A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The catalyst shows excellent selectivity toward the desired products with very high yield even after five repeated uses.  相似文献   

11.
This study aimed to combine the advantages of homogeneous catalysis and heterogeneous catalysis by immobilizing TEMPO into a water-soluble temperature responsive polymer. The supported TEMPO was water soluble and displayed excellent activity in the selective oxidation of alcohols below the LCST and can be easily recovered.  相似文献   

12.
<正>The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68-91%yields.This supported rhodium complex can be reused several times without noticeable loss of activity.Our system not only solves the basic problems of catalyst separation and recovery,but also avoids the use of phosphine ligands.  相似文献   

13.
14.
15.
Selective hydrogenation of unsaturated aldehydes, crotonaldehyde (CH3CH=CHCH=O) and cinnamaldehyde (C6H5CH=CHCH=O), has been studied over SiO2-supported monometallic Sn and bimetallic Rh---Sn catalysts in the liquid phase. Over a silica-supported monometallic Rh catalyst, Rh/SiO2, no unsaturated alcohol (crotyl alcohol or cinnamyl alcohol) was formed, whereas considerable amounts of the corresponding saturated aldehyde and saturated alcohol were obtained. The selectivity to the unsaturated alcohol was improved over the Rh---Sn bimetallic catalyst. The selectivity to the corresponding unsaturated alcohol attained ca. 65% over the Rh---Sn bimetallic catalysts. On the other hand, The supported Sn catalyst showed markedly high selectivity to the unsaturated alcohols. The selectivity of the Sn/SiO2, attained 95% to crotyl alcohol and 100% to cinnamyl alcohol, respectively. Although the conversion of each unsaturated aldehyde over Rh---Sn/SiO2 catalysts was greater than that over Sn/SiO2 catalysts, the selectivity of Sn/SiO2 catalysts to the corresponding unsaturated alcohols was superior to that over Rh---Sn/SiO2. The selectivity of Sn/SiO2 was also compared with that of Rh---Sn/SiO2 at a similar conversion of the unsaturated aldehydes. The selectivity of Sn/SiO2 was significantly greater than that of the Rh---Sn bimetallic catalyst. These results indicate that the high selectivity over Sn/SiO2 was ascribed not to low conversion but to intrinsic selectivity of the Sn catalyst.  相似文献   

16.
Hydrogen species in both SiO2 and Rh/SiO2catalysts pretreated in different atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ∼7.0, 3.8–4.0, 2.0 and 1.5–1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2lattice, respectively. Besides the above signals, both upfield signal at ∼−110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ∼−110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be β hydrogen and in a unique form of “delocalized hydrogen”. It was presumed that the β hydrogen had an upfield shift of ca. −20–−50, though its1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the β hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.  相似文献   

17.
Three sets of new and related chiral phospholane and phosphepine ligands have been prepared for Rh-catalyzed enantioselective hydrogenation. The size and substitution pattern of the cyclic monophosphanes were varied. More importantly, the ligands differ in the nature of the heterocyclic group linked to the trivalent phosphorus atom: 2-pyridone or 2-alkoxypyridine. In the corresponding Rh complexes, the pyridone units of two monodentate P ligands can assemble by hydrogen bonding and form chelates. In contrast, synthetic precursors bearing alkoxypyridine appendages are not able to aggregate via intramolecular hydrogen bonds. The nature of self-assembly is dependent on the nature of the P ligand and the solvent used for the hydrogenation (CH2Cl2 vs. MeOH). These features affect the rate of the reaction as well as the enantioselectivity, which varied in the range of 0-99 % ee Complexation studies and DFT calculations were performed to explain these differences.  相似文献   

18.
19.
20.
In the reaction cycle for methanol carbonylation catalyzed by Rh complex, the structure geometries of the reactant, intermediates, transition states and product of each elemental reaction have been studied by using the energy gradient method at HF/LANL2DZ level, and the changes of their potential profiles have also been calculated. Through IRC analyses of the transition states for each elemental reaction, it is confirmed that the various structure geometries obtained are stationary points on the cycle reaction pathway of methanol carbonylation catalyzed by Rh complex, and the changes are given in energies and structure geometries of the reactant molecules along the reaction pathway of lowest energy. It has been proposed that the geometrical conversions of intermediates play an important role during the cycle reaction. Through analyses of structure geometries, it has been suggested that, in addition to cis- and trans-structure exchange linkage of catalysis reactive species, the two pathways, cis- and tra  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号