首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在三相淤浆床-固定床反应装置中,研究含氮合成气直接合成二甲醚。使用双功能混合催化剂,粒度为0.15 mm~0.18 mm。在220 ℃~260 ℃、3.0 MPa~7.0 MPa、空速1 000 mL·g-1·h-1时考察了温度、压力及两种反应器中催化剂的装填比例对CO转化率及二甲醚选择性的影响。结果表明,一氧化碳转化率随反应压力的增加而提高,随着温度升高二甲醚的选择性变化不大,CO转化率的升高较明显,因此在催化剂活性适宜的温度范围内,该反应装置可以采用较高的反应温度。当260 ℃、7.0 MPa、三相床与固定床中催化剂比例为1∶1时,CO的转化率可达84.5%,二甲醚的选择性为78.7%。淤浆床-固定床反应装置具有操作稳定性好、CO转化率高的优点。催化剂在该装置中反应370 h活性没有明显下降。  相似文献   

2.
The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.  相似文献   

3.
Cr 助剂对 Fe 基催化剂结构和费托合成性能的影响   总被引:1,自引:0,他引:1  
 采用 N2 吸附-脱附、X 射线衍射、穆斯堡尔谱、X 射线光电子能谱、程序升温还原和热重分析等技术研究了助剂 Cr 含量对 Fe 基费托合成催化剂的织构性质、还原行为以及物相变化的影响. 在 H2/CO = 2.0, 260~300 oC, 1.5 MPa 和 2 000 ml/(g•h) 条件下, 在固定床反应器中考察了 Cr 含量对 Fe 基催化剂费托合成反应活性和产物烃选择性的影响. 结果表明, 在氧化态催化剂中, Cr 助剂与 Fe 物相存在较强的相互作用, 形成固溶体相 α-(Cr1-xFex)2O3; 随着 Cr 含量的增加, 逐渐由单一的富 Fe 相 α-(Fe1-xCrx)2O3 向富 Fe 相和富 Cr 相 α-(Cr1-yFey)2O3 两相过渡. Fe-Cr 固溶体的生成显著抑制了催化剂的还原, 导致催化剂还原度降低, 因而催化剂活性下降. 同时, Cr 的添加提高了甲烷和轻质烃选择性, 但抑制了水煤气变换活性.  相似文献   

4.
研究了Ru和Cu助剂对无K的费托(F-T)合成Fe基催化剂的织构性质、物相结构、还原和碳化行为的影响.在n(H2)/n(CO)=2.0,t=260℃,P=1.5MPa和GHSV=2000h-1的条件下,采用固定床反应器考察了Ru,Cu助剂对Fe基催化剂费托合成反应性能的影响.采用低温N2物理吸附、X射线衍射、穆斯堡尔谱...  相似文献   

5.
Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activation pressure on the catalyst activity and selectivity were investigated. It was found that iron phase compositions, textural properties, and FTS performances of the catalysts were strongly dependent on activation pressure. The high activation pressure retards the carburization. Møssbauer effect spectroscopy (MES) results indicated that the contents of the iron carbides clearly decrease with the increase of activation pressure, especially for the activation pressure increasing from 1.0 MPa to 1.5 MPa, and the reverse trend is observed for superparamagnetic Fe3+ (spm). The higher content of Fe3+ (spm) results in the higher amount of CO2 in tail gas when the catalyst is reduced at higher pressure. The catalyst activity decreases with the increase of activation pressure. The high quantity of iron carbides is necessary to obtain high FTS activity. However, the activity of the catalyst activated in syngas can not be predicted solely from the fraction of the carbides. It is concluded that activation with syngas at the lower pressure would be the most desirable for the better activity and stability on the iron-based catalyst.  相似文献   

6.
建立了费托合成鼓泡浆态床反应器双泡模型,通过模型对比的方法模拟讨论了多个反应器模型,双泡模型、全混模型以及多级串联模型,对比模拟讨论了费托合成反应各模型的适用性。模拟结果说明,全混模型适用于费托合成动力学行为的考察模拟;多级串联模型在一定的级数下能够近似模拟鼓泡浆态床中费托合成反应结果,更适用于探讨返混对费托合成反应行为的影响;双泡模型能够描述鼓泡浆态床中流体力学对反应的影响。  相似文献   

7.
An extensive study of Fischer-Tropsch synthesis on nanostructure supports with high surface area such as nanostructure γ-alumina, single wall carbon nanotubes (SWNTs), and the hybrid of SWNTs/nanostructure γ-alumina has been investigated. The nanostructure γ-alumina was promoted with lanthanum to obtain better performance of catalyst and 15 wt% cobalt loading was the basis of our investigation. Fischer-Tropsch synthesis was performed in a fixed bed reactor under different reaction conditions (220–240 °C, 15–25 bar, H2/CO ratio of 2, GHSV of 900–1400) in order to study the effects of temperature, pressure and gas hourly space velocity (GHSV) changes on hydrocarbon selectivity and catalyst activity. The catalysts were extensively characterized by different methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma (ICP), hydrogen (H2) chemisorption and temperature-programmed reduction (TPR). The results showed that the yield of hybrid supported catalyst (55.4%) is higher than that of nanostructure γ-alumina supported catalyst (55.0%) and lower than that of SWNTs supported cobalt catalyst (71.0%). The hybrid supported catalyst showed higher reduction degree and dispersion of cobalt particles. The temperature, pressure and GHSV effects on hybrid supported catalyst were studied and results showed that higher pressure favors the chain growth and temperature increase leads to the increases in methane selectivity and CO conversion. Higher hydrocarbon selectivity and CO conversion showed positive relationship with increasing GHSV while lower hydrocarbon selectivity diminishes.  相似文献   

8.
The cobalt loss of the co-precipitated Co-ZrO2 catalyst was investigated during the Fischer-Tropsch synthesis in a continuously stirred tank reactor. The cobalt species in the produced water originating from the transformation of CoO into Co2+ ions was tested by TPR, XRD and XPS. Furthermore, reduction at a relatively higher temperature resulted in a lower loss of cobalt.  相似文献   

9.
以FeCuK/Si O2为母体催化剂,通过乙酸钠浸渍得到一组不同Na含量的费托合成铁基催化剂.采用原子发射光谱、低温N2吸附、程序升温还原和M ssbauer谱等技术对催化剂进行了表征.在H2/CO摩尔比为0.67,空速为2 000 h-1,压力为1.5 MPa和温度为250℃的条件下进行了浆态床F-T合成反应性能评价实验.结果表明,浸渍少量Na能提高催化剂的比表面积,促进铁物相的分散,而浸渍大量Na却大大降低了催化剂的比表面积,使催化剂中的铁物相聚集形成较大的颗粒;浸渍Na抑制了催化剂在H2中的第一步还原,但促进了催化剂在CO中的碳化;在原位合成气还原过程中,浸渍Na有利于催化剂的碳化.在500 h的运行实验中,浸渍Na的催化剂均表现出不同程度的失活现象.反应结果表明,浸渍Na对水煤气变换反应活性影响不大,对费托合成反应活性和烃产物选择性有较大的影响.在铁基催化剂上浸渍Na有利于C12 重质烃和低碳烯烃的生成.  相似文献   

10.
Summary Characterization (BET and TPD) and reaction studies were conducted with activated carbon supported iron catalysts (Fe/AC) used for the Fischer-Tropsch synthesis (FTS). The TPD study showed that there existed interactions between metals and the AC surface. Greater association of Cu and K promoters with the AC surface resulted in stronger promoter to surface interaction, which enhanced the H2 desorption ability of the Cu and K promoted Fe/AC catalyst prepared under vacuum impregnation (VI). Catalytic behavior of a Fe/AC catalyst (VI-15 Fe/2 Cu/2 K/81 AC, in parts per weight) was studied in a 1-liter slurry phase continuous stirred tank reactor. The catalyst presented moderate syngas conversion (44.3-60.6%) and high gaseous selectivity (CH4, 12.8-15.1% and C2-C4, 42.4-46.1%) under 304oC, 3.0 MPa, 1.1 L(STP)/g-cat/h, and H2/CO = 2.0 during 166 h of testing. Detectable hydrocarbons up to C18 were formed on the Fe/AC catalyst.  相似文献   

11.
Iron-manganese catalysts were prepared by co-precipitation method.Characterization of catalysts was carried out by using X-ray diffraction(XRD),scanning electron microscopy(SEM),temperature program reduction(TPR),N2 adsorption-desorption measurements.The results from catalytic performance tests in Fischer-Tropsch synthesis showed that the iron-manganese catalysts are supersensitive to catalyst composition and materials source.It was found that C2~4 light olefins increased while CH4 and CO2 decreased by using iron-manganese catalyst prepared from iron(II) sulfate(A catalyst).The activity and selectivity of A catalyst was studied in different operational conditions.The results showed that the best operational conditions for C2~4 light olefins production were H2/CO=1/1(GHSV=2400h-1) at 260℃ under 0.3MPa total pressure.  相似文献   

12.
A new metal-organic framework compound formulated as [Co0.67Zn0.83(btc)(H2O)6] (1) was prepared and characterized by elemental analysis, and FT-IR spectroscopy. The single crystal analysis was used for determination of its structure. The complex was used for the preparation of two inorganic precursors [Co0.67Zn0.83(btc)(H2O)6]/SiO2 and [Co0.67Zn0.83(btc)(H2O)6]/Al2O3, which were thermally decomposed to obtain new Co-Zn alloy catalysts for Fischer-Tropsch synthesis. The same catalysts were prepared by the conventional impregnation method as reference catalysts. The catalysts were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET specific surface area, and their catalytic performances were studied in the temperature range 200–300 °C and P = 5 bar. The results show that the Co-Zn synthesized alloy catalysts have acceptable activity in the Fischer-Tropsch (FTS) synthesis and have better selectivity to desired products than reference catalysts. The difference between the Co-Zn alloy catalysts and the reference catalysts is mainly caused by their different particle size.  相似文献   

13.
还原温度与时间对铁基催化剂浆态床F-T合成性能的影响   总被引:4,自引:3,他引:1  
在浆态床反应器中考察了未还原催化剂以及在240℃和270℃的还原温度下还原时间对Fe/Cu/K/SiO2催化剂F-T合成反应性能的影响,采用Mssbauer谱研究了还原和反应后催化剂的物相组成。结果表明,在240℃延长还原时间或将还原温度升高到270℃均有利于催化剂的还原,270℃还原的催化剂的活性和稳定性明显高于未还原和240℃还原的催化剂,催化剂的运行稳定性与催化剂在反应过程中的流失量有密切关系。催化剂高温还原时烃产物分布倾向于生成低碳数的烃类,在相同的还原温度下,烃产物选择性随还原时间的延长向轻组分方向偏移。  相似文献   

14.
A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N2 physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH3)3 species even after calcinations and H2 reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH3)3 for the re-adsorption of α-olefins.  相似文献   

15.
Cobalt-based catalysts were prepared by a wet impregnation method on carbon nanotubes (CNTs) support and promoted with niobium.Samples were characterized by nitrogen adsorption,TEM,XRD,TPR,TPO and H2-TPD.Addition of niobium increased the dispersion of cobalt but decreased the catalysts reducibility.Fischer-Tropsch synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K,1 atm and H2/CO=2 for 5 h.Addition of niobium enhanced the C5+ hydrocarbons selectivity by 39% and reduced methane selectivity by 59%.These effects were more pronounced for 0.04%Nb/Co/CNTs catalyst,compared with those observed for other niobium compositions.  相似文献   

16.
Novel cobalt Fischer-Tropsch synthesis(FTS) catalysts were prepared from natural halloysite nanotubes(HNT) by double-solvent and wetimpregnation methods,and characterized by TEM,XRD,TPR and N2 adsorption-desorption.Comparing with the catalyst prepared by wetimpregnation method,the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect,thus showing higher catalytic activity for Fischer-Tropsch synthesis.  相似文献   

17.
Unlike traditional kinetic models describing the dependence of the concentrations of all the products on the number of carbon atoms and widely used for analysis of the mechanism of the Fischer-Tropsch synthesis, fragmentary models establish a relationship between the concentrations of a limited number of products. They can be constructed if it is possible to obtain a dimensionless function of the concentrations that does not change with change in the concentrations themselves. Such models are based on fragments of the kinetic schemes of the process and are designed both for identification and discrimination among the mechanisms with data obtained in both differential and integral reactors. The general principles for the construction of fragmentary models are described. Examples of identification and discrimination among the various mechanisms from the results of fragmentary modelling using previously obtained experimental data for a cobalt catalyst are presented. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 2, pp. 67–81, March–April, 2006.  相似文献   

18.
以含羧酸配体的钴羰基簇合物Co2(CO)6HCCCOOH,Co3(CO)9CCH2COOH,Co4(CO)10HCCCOOH 为前驱体,γ-Al2O3为载体,通过浸渍法制备了一系列催化剂;同时以Co(NO32作为前驱体制备了参比催化剂. 对制备的催化剂进行了费托反应性能评价,并用透射电子显微镜、氨程序升温脱附和傅里叶变换红外光谱等手段对催化剂进行了表征. 结果发现,不同前驱体制备的催化剂对载体上Co的分布具有明显影响,进而影响催化剂活性. 反应结果表明,不同前驱体制备的催化剂上CO转化率及C5+选择性顺序为Co3(CO)9CCH2COOH > Co2(CO)6HCCCOOH > Co4(CO)10HCCCOOH > Co(NO32.  相似文献   

19.
Silica nanotubes(SNT) have been synthesized using carbon nanotubes(CNT) as a template.Silica-coated carbon nanotubes(SNT-CNT) and SNT were loaded with a cobalt catalyst for use in Fischer-Tropsch synthesis(FTS).The catalysts were prepared by incipient wetness impregnation and characterized by N2 physisorption,X-ray diffraction(XRD),hydrogen temperature programmed reduction(H2-TPR) and transmission electron microscopy(TEM).FTS performance was evaluated in a fixed-bed reactor at 493 K and 1.0 MPa.Co/CNT and Co/SNT catalysts showed higher activity than Co/SNT-CNT in FTS because of the smaller cobalt particle size,higher dispersion and stronger reducibility.The results also showed that structure of the support affects the product selectivity in FTS.The synergistic effects of cobalt particle size,catalytic activity and diffusion limitations as a consequence of its small average pore size lead to medium selectivity to C5+ hydrocarbons and CH4 over Co/SNT-CNT.On the other hand,the Co/CNT showed higher CH4 selectivity and lower C5+ selectivity than Co/SNT,due to its smaller average pore size and cobalt particle size.  相似文献   

20.
A methodology for hazard investigation based on the integration of a mathematical model approach into hazard and operability analysis is presented. This approach is based on mathematical modelling of a process unit where both steady-state analysis, including analysis of the steady states multiplicity and stability, and dynamic simulation are used. The dynamic simulation serves for the investigation of consequences of failures of the main controlled parameters, i.e. inlet temperature, feed temperature and feed composition. This simulation is also very useful for the determination of the influence of failure duration on the reactor behaviour. On the other hand, the steady state simulation can predict the reactor behaviour in a wide range of failure magnitude and determine the parametric zones, where shifting from one steady state to another one may occur. A fixed bed reactor for methyl tertiary-butyl ether synthesis was chosen to identify potential hazard and operational problems of a real process. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号