首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴志永  刘克新  任晓堂 《中国物理 B》2010,19(9):97806-097806
Photoluminescence (PL) spectra of Si nanocrystals (NCs) prepared by 130 keV Si ions implantation onto SiO2 matrix were investigated as a function of annealing temperature and implanted ion dose. PL spectra consist of two PL peaks, originated from smaller Si NCs due to quantum confinement effect (QCE) and the interface states located at the surface of larger Si NCs. The evolution of number of dangling bonds (DBs) on Si NCs was also investigated. For hydrogen-passivated samples, a monotonic increase in PL peak intensity with the dose of implanted Si ions up to 3×1017 ions /cm2 is observed. The number of DBs on individual Si NC, the interaction between DBs at the surface of neighbouring Si NCs and their effects on the efficiency of PL are discussed.  相似文献   

2.
In ultrathin high-kk oxide layers knowledge of the band line up and band gap is essential for modeling the transport properties and to learn about a device’s long term stability and reliability. However, such data are hard to determine in such ultrathin layers and usually are extrapolated from values for bulk samples or are taken from the literature. In our in situ approach we use electron energy loss spectroscopy, valence band photoelectron spectroscopy, X-ray absorption spectroscopy, and resonant inelastic X-ray scattering to obtain the loss function and the valence and conduction band densities of states. From such data we derive the values of the band offsets and of the band gap. We discuss the ability of this combination of different techniques for the analysis of such complex ultrathin dielectric systems and discuss in detail the properties of the native oxide in SiO2/Si(001) and SiO2/3C−SiC(001).  相似文献   

3.
This paper deals with the electronic properties of Si and Ge nanocrystals (NCs) with a view to studying their potentialities for single electron devices. The 3D Poisson–Schrödinger equations are self-consistently solved for a single NC embedded in SiO2. A 1D spherical approximation is compared to the full 3D approach. For various shapes and sizes of NC the energy levels and the density are calculated as a function of the applied voltage and the number of electrons stored in the NC. The potential properties of such nanostructures for Coulomb blockade operation are deduced.  相似文献   

4.
We present the ab initio phonon dispersion relations of -Ga. The calculations are carried out within density functional perturbation theory by using either norm-conserving pseudopotential and 4s and 4p electrons in the valence or ultrasoft pseudopotential and 3d electrons in the valence as well. The inclusion of 3d electrons in the valence turned out to be necessary to better reproduce the experimental frequencies of the stretching modes of the Ga2 dimers present in the -Ga structure.Received: 29 July 2003, Published online: 19 November 2003PACS: 63.20.Dj Phonon states and bands, normal modes, and phonon dispersion - 71.15.Nc Total energy and cohesive energy calculations - 71.15.Mb Density functional theory, local density approximation, gradient and other corrections  相似文献   

5.
We have investigated the synthesis of nanostructures, as well as the control of their size and location by means of ion beams. The phase separation and interface kinetics under ion irradiation give new possibilities for controlling the growth of nanostructures. Additionally, the chemical decomposition of the host matrix by collisional mixing can contribute to the self-organization of nanostructures, especially at interfaces. It is shown how collisional mixing during ion implantation affects nanocrystal (NC) synthesis and how ion irradiation through NCs modifies their size and size distribution. An analytical expression for solute concentration around an ion-irradiated NC was found, which may be written like the well-known Gibbs–Thomson relation. However, parameters have modified meanings, which has a significant impact on the evolution of NC ensembles. “Inverse Ostwald ripening” of NCs, resulting in an unimodal NC size distribution, is predicted, which has been confirmed experimentally for Au NCs in SiO2 and by kinetic lattice Monte Carlo simulations. At interfaces, the same ion-irradiation-induced mechanism may result in self-organization of NCs into a thin δ-layer. Collisional decomposition of SiO2 may enhance the NC δ-layer formation in SiO2 at the Si/SiO2 interface. The distance of the self-organized NC δ-layer from the SiO2/Si interface renders the structure interesting for non-volatile memory applications. Received: 11 November 2002 / Accepted: 12 November 2002 / Published online: 4 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-351-260-3285, E-mail: K.-H.Heinig@fz-rossendorf.de  相似文献   

6.
We construct the theory of carriers confined in Si quantum dots with finite energy barriers for electrons and holes in the framework of the multiband effective mass theory. We apply this theory for theoretical modeling of the excitation of erbium inside and outside of Si nanocrystals in SiO2 matrix due to the Auger process induced by the recombination of a confined electron-hole pair as well as the intraband transitions of “hot” confined carriers. Auger de-excitation processes of the Er3+ ion leading to the quenching of erbium luminescence are discussed as well.  相似文献   

7.
We study theoretically the optical properties of embedded Ge and Si nanocrystals (NCs) in wide band-gap matrix and compared the obtained results for both NCs embedded in SiO2 matrix. We calculate the ground and excited electron and hole levels in both Ge and Si nanocrystals (quantum dots) in a multiband effective mass approximation. We use the envelope function approximation taking into account the elliptic symmetry of the bottom of the conduction band and the complex structure of the top of the valence band in both Si and Ge (NCs). The Auger recombination (AR) in both nanocrystals is thoroughly investigated. The excited electron (EE), excited hole (EH) and biexciton AR types are considered. The Auger recombination (AR) lifetime in both NCs has been estimated and compared.  相似文献   

8.
Silicon is by far the most important material used in microelectronics, partly due to the excellent electronic properties of its native oxide (SiO2), but substitute semiconductors are constantly the matter of research. SiC is one of the most promising candidates, also because of the formation of SiO2 as native oxide. However, the SiO2/SiC interface has very poor electrical properties due to a very high density of interface states which reduce its functionality in MIS devices. We have studied the electronic properties of defects in the SiO2/Si and SiO2/SiC interfaces by means of XAS, XPS and resonant photoemission at the O 1s and the Si 2p edges, using silicon dioxide thermally grown with thicknesses below 10 nm. Our XAS data are in perfect agreement with literature; in addition, resonant photoemission reveals the resonant contributions of the individual valence states. For the main peaks in the valence band we find accordance between the resonant behaviour and the absorption spectra, except for the peaks at −15 eV binding energy, whose resonant photoemission spectra have extra features. One of them is present in both interfaces and is due to similar defects, while another one at lower photon energy is present only for the SiO2/SiC interface. This is related to a defect state which is not present at the SiO2/Si interface.  相似文献   

9.
We present coupled classical and quantum simulations of 1 to 2 nm Si nanocrystals (NCs) embedded in amorphous SiO(2) and we show that by tuning the density of the oxide matrix one may change the relative alignment of Si NC and SiO(2) electronic states at the interface. We find that interfacial strain plays a key role in determining the variation of the nanaoparticle gap as a function of size, as well as of conduction band offsets with the oxide. In particular, our results show that it is the variation of the valence band offset with size that is responsible for the gap change. Our findings suggest that the elastic properties of the embedding matrix may be tuned to tailor the energy levels of small Si NCs so as to optimize their performance in optoelectronic devices and solar cells.  相似文献   

10.
Optical phonon modes, confined in CdSxSe1−x nanocrystal (NC) quantum dots (≈2 nm in radius) grown in a glass matrix by the melting‐nucleation method, were studied by resonant Raman scattering (RRS) spectroscopy and theoretical modeling. The formation of nanocrystalline quantum dots (QDs) is evidenced by the observation of absorption peaks and theoretically expected resonance bands in the RRS excitation spectra. This system, a ternary alloy, offers the possibility to investigate the interplay between the effects of phonon localization by disorder and phonon confinement by the NC/matrix interface. Based on the concept of propagating optical phonons, which is accepted for two‐mode pseudo‐binary alloys in their bulk form, we extended the continuous lattice dynamics model, which has successfully been used for nearly spherical NCs of binary materials, to the present case. After determining the alloy composition for NCs (that was evaluated with only 2–3% uncertainty using the bulk longitudinal optical phonon wavenumbers) and the NC size (using atomic force microscopy and optical absorption data), the experimental RRS spectra were described rather well by this theory, including the line shape and polarization dependence of the scattering intensity. Even though the presence of a compressive strain in the NCs (introduced by the matrix) masks the expected downward shift owing to the phonons' spatial quantization, the asymmetric broadening of both Raman peaks is similar to that characteristic of NCs of pure binary materials. Although with some caution, we suggest that both CdSe‐like and CdS‐like optical phonon modes indeed are propagating within the NC size unless the alloy is considerably heterogeneous. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.  相似文献   

12.
朱梓忠  赵景泰 《中国物理》1999,8(5):356-360
The electronic structures and geometry of a solid assembled out of cubic close packing of Al12Si clusters have been studied with an ab initio pseudopotential method and within the local density functional theory. Both the lattice constant of the solid formed and the atomic geometry of the clusters in it have been optimized through the ab initio method without adjustable variables. Our results show that the crystal composed of Al12Si clusters is a metal rather than a semiconductor. Interactions between Al12Si clusters in the solid are strong and the clusters are no longer inert under crystal field.  相似文献   

13.
Diluted magnetic semiconductors (DMS) like Ga1?x Mn x As are described by a realistic tight-binding model (TBM) for the (valence) bands of GaAs, by a Zener (J-)term modeling the coupling of the localized Mn-spins to the spins of the valence band electrons, and by an additional potential scattering (V-) term due to the Mn-impurities. We calculate the effective (Heisenberg) exchange interaction between two Mn-moments mediated by the valence electrons. The influence of the number of bands taken into account (6-band or 8-band TBM) and of the potential (impurity) scattering V-term is investigated. We find that for realistic values of the parameters the indirect exchange integrals show a long-range, oscillating (RKKY-like) behavior, if the V-term is neglected, probably leading to spin-glass behavior rather than magnetic order. But by including a V-term of a realistic magnitude the exchange couplings become short ranged and mainly positive allowing for the possibility of ferromagnetic order. Our results are in good agreement with available results of ab initio treatments.  相似文献   

14.
Third-order bound-charge electronic nonlinearities of Si nanocrystals (NCs) embedded in a wide band-gap matrix representing silica are theoretically studied using an atomistic pseudopotential approach. Nonlinear refractive index, two-photon absorption and optical switching parameter are examined from small clusters to NCs up to a size of 3 nm. Compared to bulk values, Si NCs show higher third-order optical nonlinearities and much wider two-photon absorption-free energy gap which gives rise to enhancement in the optical switching parameter.  相似文献   

15.
NiAl的几何与电子结构   总被引:3,自引:0,他引:3       下载免费PDF全文
关键词:  相似文献   

16.
李承斌  黎明锴  尹东  刘福庆  范湘军 《中国物理》2005,14(11):2287-2292
A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals, transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.  相似文献   

17.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

18.

The ab initio calculations of the electronic structure of low-dimensional graphene–iron–nickel and graphene–silicon–iron systems were carried out using the density functional theory. For the graphene–Fe–Ni(111) system, band structures for different spin projections and total densities of valence electrons are determined. The energy position of the Dirac cone caused by the p z states of graphene depends weakly on the number of iron layers intercalated into the interlayer gap between nickel and graphene. For the graphene–Si–Fe(111) system, the most advantageous positions of silicon atoms on iron are determined. The intercalation of silicon under graphene leads to a sharp decrease in the interaction of carbon atoms with the substrate and largely restores the electronic properties of free graphene.

  相似文献   

19.
From ab initio studies employing the pseudopotential method and the density functional scheme, we report on progressive changes in geometry, electronic states, and atomic orbitals on Si(0 0 1) by adsorption of different amounts of Bi coverage. For the 1/4 ML coverage, uncovered Si dimers retain the characteristic asymmetric (tilted) geometry of the clean Si(0 0 1) surface and the Si dimers underneath the Bi dimer have become symmetric (untilted) and elongated. For this geometry, occupied as well as unoccupied surface states are found to lie in the silicon band gap, both sets originating mainly from the uncovered and tilted silicon dimers. For the 1/2 ML coverage, there are still both occupied and unoccupied surface states in the band gap. The highest occupied state originates from an elaborate mixture of the pz orbital at the Si and Bi dimer atoms, and the lowest unoccupied state has a ppσ* antibonding character derived from the Bi dimer atoms. For 1 ML coverage, there are no surface states in the fundamental bulk band gap. The highest occupied and the lowest unoccupied states, lying close to band edges, show a linear combination of the pz orbitals and ppσ* antibonding orbital characters, respectively, derived from the Bi dimer atoms.  相似文献   

20.
吴志永  刘克新  任晓堂 《中国物理 B》2012,21(9):97804-097804
Photoluminescence (PL) intensity of passivated silicon nanocrystals (Si NCs) embeded in an SiO2 matrix is compared with that of unpassivated ones. We investigate the relative enhancement of PL intensity (IR) as a function of annealing temperature and implanted Si ion dose. The IR increases simultaneously with the annealing temperature. This demonstrates an increase in the number of dangling bonds (DBs) with the degree of Si crystallization via varying the annealing temperature. The increase in IR with implanted Si ion dose is also observed. We believe that the near-field interaction between DBs and neighboring Si NCs is an additional factor that reduces the PL efficiency of unpassivated Si NCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号