首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micron-sized monodispersed polystyrene (PS)/poly(3,5-xylidine) (PXy) composite particles were produced by chemical oxidative seeded dispersion polymerization of 3,5-xylidine at 20 °C with 1.6-μm-sized monodispersed PS seed particles in HCl aqueous solution, the pH of which was always kept at 2.5 with a pH stat. The composite particles produced consisted of a PS core and a PXy shell. Received: 16 December 1998 Accepted in revised form: 25 March 1999  相似文献   

2.
 Micron-sized, monodispersed, poly(methyl methacrylate) (PMMA)/polystyrene (PS)/PMMA/PS multilayered composite particles were successfully produced by three-step seeded dispersion polymerizations in methanol/water media. The first seeded dispersion polymerization was carried out with 2-μm-sized, monodispersed PMMA particles.  相似文献   

3.
Micron-sized, monodispersed, electrically conductive polystyrene (PS)/polyaniline (PAn) composite particles were produced by chemical oxidative seeded dispersion polymerization of aniline at 0 °C with 1.37-μm-sized, monodispersed PS seed particles in HCl aqueous solution, where the pH value was kept at 2.5 with a pH stat. The composite particles consisted of a PS core and a PAn shell. A pellet of the composite particles had a conductivity of 3.4 × 10−3 S/cm. Received: 5 April 2000 Accepted: 10 August 2000  相似文献   

4.
In order to develop the seeded dispersion polymerization technique for the production of micron-sized monodispersed core/shell composite polymer particles the effect of polymerization temperature on the core/shell morphology was examined. Micron-sized monodispersed composite particles were produced by seeded dispersion polymerizations of styrene with about 1.4-μm-sized monodispersed poly(n-butyl methacrylate) (Pn-BMA) and poly(i-butyl methacrylate) (Pi-BMA) particles in a methanol/water (4/1, w/w) medium in the temperature range from 20 to 90 °C. The composite particles, PBMA/polystyrene (PS) (2/1, w/w), consisting of a PBMA core and a PS shell were produced with 2,2′-azobis(4-methoxy-2,4-dimethyl valeronitrile) initiator at 30 °C for Pn-BMA seed and with 2,2′-azobis(isobutyronitrile) initiator at 60 °C for Pi-BMA seed. The polymerization temperatures were a little above the glass-transition temperatures (T g) of both Pn-BMA (20 °C) and Pi-BMA (40 °C). On the other hand, when the seeded dispersion polymerizations were carried out at much higher temperatures than the T g of the seed polymers, composite particles having a polymeric oil-in-oil structure were produced. Received: 14 October 1998 Accepted in revised form: 2 June 1999  相似文献   

5.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

6.
 Micron-sized monodispersed polymethyl methacrylate (PMMA)/polystyrene (PS) (PMMA/PS=2/1, wt ratio) composite particles consisting of PMMA-core and PS-shell were successfully produced by seeded dispersion polymerization of styrene in a methanol/water medium in the presence of about 2 μm-sized monodispersed PMMA particles. From the view point of thermodynamic equilibrium, such a morphology is difficult to form by usual seeded polymerization in a polar medium such as water. It is concluded that seeded dispersion polymerization in which almost all monomers and initiators exist in the medium has an advantage to produce core/shell polymer particles in which polymer layers accumulate in their order of the production regardless of the hydrophobicity of polymers, because of high viscosity in polymerizing particles. Received: 9 December 1996 Accepted: 26 February 1997  相似文献   

7.
 Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced. Received: 30 September 1999/Accepted: 18 April 2000  相似文献   

8.
 Monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles having 9.4 μm in diameter were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles, and their morphologies were examined. The highly BMA-swollen PS particles (about 150 times the weight of the PS seed particles) were prepared by mixing monodispersed 1.8 μm-sized PS seed particles and 0.7 μm sized BMA droplets prepared with an ultrasonic homogenizer in ethanol/water (1/2, w/w) medium at room temperature. After NaNO2 aqueous solution as inhibitor was added in the dispersion, the seeded polymerization was carried out at 70 °C. In an optical microscopic observation, one or two spherical high contrast regions which consisted mainly of PS were observed inside PS/PBMA composite particles. In the PS domain, there were many fine spherical PBMA domains. Such morphologies were based on the phase separation of PS and PBMA within the homogeneous swollen particles during the seeded polymerization. Received: 04 June 1997 Accepted: 27 August 1997  相似文献   

9.
Micron-sized, monodispersed highly styrene-“adsorbed” particles having snow-man shape were prepared by the dynamic swelling method (DSM) with tightly cross-linked polymer seed particles as follows. First, 3.8 μm-sized monodispersed polystyrene (PS)/ poly(divinylbenzene) (PDVB) (PS/PDVB = 1/10 wt. ratio) composite particles produced by seeded polymerization utilizing DSM were dispersed in an ethanol/water (6/4, w/w) solution dissolving styrene monomer, and poly(vinyl alcohol) as a stabilizer. Second, water was subsequently added to the dispersion with a micro-feeder at a rate of 2.88 ml/h at room temperature. The cross-linked seed particles adsorbed a large amount of styrene onto the surfaces and resulted in mono-dispersed highly styrene-“adsorbed” snow-man shape particles having about 10 μm in diameter. Received: 16 April 1998 Accepted: 9 June 1998  相似文献   

10.
 The effect of the weight ratio of seed polymer/monomer on the morphology of the poly(methyl methacrylate) (PMMA)/polystyrene (PS) monodispersed composite particles produced by batch seeded dispersion polymerization of styrene with 1.64-μm-sized monodispersed PMMA seed particles in a methanol/water medium (4/1 w/w) was examined. In the PMMA/PS weight ratios of 3/1 and 2/1, the composite particles had a clear morphology consisting of a PMMA core and a PS shell. In the ratio of 1/1, a lot of small PS domains were observed in the PMMA core though the PS shell was still formed. By stepwise addition of styrene monomer, the formation of the small PS domain was depressed and complete core/shell morphology was formed. Absorption/release treatments of toluene into/from the PMMA/PS (1/1 w/w) composite particles resulted in a drastic morphological change from the core/shell structure to a multi- layered one. Received: 2 February 1999 Accepted in revised form: 7 April  相似文献   

11.
 Micron-sized monodispersed polystyrene (PS)/poly(n-butyl methacrylate) composite particles were produced as follows. First, 1.77 μm-sized monodispersed PS seed particles produced by dispersion polymerization were dispersed in ethanol/water (1/2, w/w) medium dissolving poly(vinyl alcohol) as a stabilizer. n-Butyl methacrylate (BMA) monomer dissolving benzoyl peroxide initiator was emulsified in ethanol/water (1/2, w/w) solution of sodium dodecyl sulfate as emulsifier with ultrasonic homogenizer, and the BMA monomer emulsion was mixed with the PS seed emulsion. The PS seed particles absorbed with a large amount of BMA (about 150 times weight of the seed particles) for 2 h to about 10 μm in diameter while keeping good monodispersity and BMA droplets disappeared finally. The seeded polymerization was carried out at 70 °C after a certain amount of water was added to depress the redissolving of BMA from the swollen particles into the medium by raising from room temperature to the polymerzation temperature. Received: 21 February 1996 Accepted: 4 September 1996  相似文献   

12.
Recently, we found that “golf-ball-like” polystyrene (PS)/poly(butyl acrytlate) composite particles could be produced by seeded emulsion polymerization of butyl acrylate with PS seed particles. In this article, the theoretical and experimental thermodynamic instabilities of the golf-ball-like structure are discussed and are compared with core-shell and hemispherical morphologies. Received: 2 February 1999 Accepted in revised form: 3 June 1999  相似文献   

13.
 Temperature-sensitive micron-sized monodispersed composite polymer particles were prepared by seeded copolymerization of dimethylaminoethyl methacrylate and ethylene glycol dimethacrylate with 1.77 μm-sized monodispersed polystyrene seed particles. The change in surface property at temperature above and below 35 °C was examined by differential scanning calorimetry, trypsin activity and the adsorption/ desorption behaviors of low molecular weight cationic emulsifier as well as biomolecules. Received: 6 August 1997 Accepted: 16 January 1998  相似文献   

14.
 Composite polymer particles which contain poly(methyl methacrylate) (PMMA) and polystyrene (PS) components (PMMA/PS composite particle) were synthesized by the method of multistage soapless seeded emulsion polymerization. In this study, the process of multistage soapless seeded emulsion polymerization included two-stage polymerization, three-stage polymerization or four-stage polymerization. The morphologies of the PMMA/PS composite particles were studied. The kinetic factor was the main force to control the morphology of the linear PMMA–PS composite particles which were synthesized by the method of two-stage reaction. Both the kinetic factor and the thermodynamic factor decide the morphology of the linear composite particles which were synthesized by the method of either three-stage or four-stage reaction. However, the thermodynamic factor cannot influence the morphology of the PMMA/PS composite particles with a cross-linked structure which were synthesized by the method of three-stage reaction. The cross-linked composite polymer particles had the morphology of a multilayer structure, which showed that the polymer layers accumulated in their order of production. Received: 9 January 2001 Accepted: 14 June 2001  相似文献   

15.
Three kinds of micron-sized monodispersed polystyrene (PS)/ poly(styrene - divinylbenzene) composite particles were produced by two kinds of seeded copolymerizations of styrene (S) and divinylbenzene (DVB) (PS seed/ (S+DVB)=2/1, wt. ratio; S/DVB=1/1, molar ratio) in the presence of about 2 μm-sized monodispersed PS particles, and their morphologies were examined. One was produced by a seeded dispersion copolymerization where almost monomers and initiators exist in an ethanol/water (12.6/4.0, w/w) medium. The others two were produced by seeded copolymerizations with the dynamic swelling method where almost monomers exist in the monomer-swollen particles using 2, 2'-azobisisobutyronitrile in monomer-swollen PS seed particles or using 4, 4'-azobis (4-cyanopentanoic acid) in an ethanol/water (7/43, w/w) medium. In the former polymerization, the produced composite particles had a high dense crosslinked shell, whereas in the latter two polymerizations, they did the comparatively homogeneous crosslinked structures.  相似文献   

16.
Following previous works [1, 2], silica–polystyrene core–shell particles have been synthesized by dispersion polymerization of styrene in an ethanol/water mixture in the presence of a poly(styrene-b-ethylene oxide) block copolymer as stabilizer. Besides the formation of composite core–shell particles, a large number of free latex particles that do not contain silica were also formed. This number decreases as the size of the silica beads decreases from 300 to 29 nm in diameter, and becomes very low compared to the number of composite particles for the smallest silica beads used. In every case, the composite particles could be easily separated from the free latex particles by centrifugation, providing a material made of regular core–shell composite particles. On the basis of the mechanisms involved in dispersion polymerization, hypotheses were formulated to account for the formation of the silica–polystyrene composite particles. Received: 6 May 1999 Accepted in revised form: 29 June 1999  相似文献   

17.
 Recently, the authors reported that micron-sized monodispersed cross-linked polymer particles having a single hollow in the inside were produced by seeded polymerization for the dispersion of (toluene/divinylbenzene)-swollen polystyrene (PS) particles prepared utilizing the dynamic swelling method which the authors had proposed. In this article, the particles at various conversions of the seeded polymerization were observed with an optical microscope in detail. From the obtained results, the formation mechanism of the hollow structure is suggested as follows. As seeded polymerization proceeds, poly-divinylbenzene (PDVB) molecules precipitated in the swollen particle are trapped near the interface and gradually pile at the inner surface, which results in a cross-linked PDVB shell. PS which dissolves in the swollen particles is repelled gradually to the inside. After the completion of the polymerization, toluene in the hollow evaporates by drying, and PS clings to the inner wall of the shell uniformly. Received: 14 February 1997 Accepted: 16 April 1997  相似文献   

18.
Micron-sized, monodispersed, “onion-like” multilayered poly(methyl methacrylate) (PMMA)/polystyrene (PS) (1/1, w/w) composite particles were prepared by the solvent-absorbing/releasing method (SARM). The viscosity within toluene-swollen composite particles, the release rate of toluene therefrom, the PMMA/PS ratio, and the kind of solvent had great influences on the reconstruction of the morphology of the PMMA/PS composite particles by the SARM. From these results, the conditions for the preparation of the multilayered composite particles by the SARM are clarified. Received: 28 September 2000 Accepted: 27 October 2000  相似文献   

19.
Micron-sized, monodisperse, “rugby-ball-like” polymer particles were produced by seeded polymerization for the dispersion of (divinylbenzene/vinylbiphenyl/xylene)-swollen polystyrene particles prepared by utilizing the dynamic swelling method which the authors proposed in 1991. The shape of the composite polymer particle was reversibly transformed between a rugby-ball-like shape and a spherical one by absorbing/releasing toluene. Received: 24 January 2001/Accepted: 18 April 2001  相似文献   

20.
Micrometer-sized, monodisperse, hollow polystyrene (PS)/poly(ethylene glycol dimethacrylate) (PEGDM) composite particles with a single hole in the shell were prepared by seeded polymerization using (ethylene glycol dimethacrylate/xylene)-swollen PS particles in the presence of sodium dodecyl sulfate (SDS). Single holes were observed at SDS concentrations above 3 mM, much lower than in the PS/polydivinylbenzene (PDVB) system previously reported (above 45 mM). Phase separation inside droplets occurred at lower conversion in the PEGDM system than the PDVB system. Phase separation in the droplet at the early stage of the polymerization is an important factor for the formation of the single hole in the shell. Part CCCXIII of the series “Studies on Suspension and Emulsion.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号