首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic effects of low-frequency biasing on spontaneous otoacoustic emissions (SOAEs) were studied in human subjects under various signal conditions. Results showed a combined suppression and modulation of the SOAE amplitudes at high bias tone levels. Ear-canal acoustic spectra demonstrated a reduction in SOAE amplitude and growths of sidebands while increasing the bias tone level. These effects varied depending on the relative strength of the bias tone to a particular SOAE. The SOAE magnitudes were suppressed when the cochlear partition was biased in both directions. This quasi-static modulation pattern showed a shape consistent with the first derivative of a sigmoid-shaped nonlinear function. In the time domain, the SOAE amplitudes were modulated with the instantaneous phase of the bias tone. For each biasing cycle, the SOAE envelope showed two peaks each corresponded to a zero crossing of the bias tone. The temporal modulation patterns varied systematically with the level and frequency of the bias tone. These dynamic behaviors of the SOAEs are consistent with the shifting of the operating point along the nonlinear transducer function of the cochlea. The results suggest that the nonlinearity in cochlear hair cell transduction may be involved in the generation of SOAEs.  相似文献   

2.
Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.  相似文献   

3.
Otoacoustic emissions (OAEs) of two types--spontaneous and evoked distortion products--were studied before, during, and following a period of aspirin use. As previously reported, aspirin consumption uniformly reduced the spontaneous OAEs (SOAEs) to unmeasurable or extremely low levels. Aspirin consumption also reduced the amplitude of the evoked distortion products (EDPs) but did not eliminate them entirely. The amplitude of the EDP and its change with aspirin consumption were related to both the proximity of the EDP to the frequency of the SOAE and to the level of the primaries producing the EDP. At low primary levels, even with the SOAE absent (due to aspirin consumption, or suppression), EDPs near the SOAE frequency were 10-20 dB higher than when they were 100 Hz away from the SOAE frequency.  相似文献   

4.
It is well known that excessive exposure to noise results in temporary and/or permanent changes in hearing sensitivity in both human and animal subjects. The purpose of this review is to describe the major findings from laboratory studies of experimentally induced hearing losses, both temporary and permanent, resulting from exposure to noise in animal subjects which have been published since the report of Kryter et al. (1966). The data reviewed support the following general statements: (1) The chinchilla is the most widely used and most appropriate animal model for studies of noise-induced hearing loss; (2) with continuous exposures to moderate-level noise, thresholds reach asymptotic levels (ATS) within 18-24 h; (3) permanent threshold shifts, however, depend upon the level, frequency, and the duration of exposure; (4) below a "critical level" of about 115 dB, permanent threshold shift (PTS) and cell loss are generally related to the total energy in continuous exposures; (5) periodic rest periods inserted in an exposure schedule are protective and result in less hearing loss and cochlear damage than equal energy continuous exposures; and (6) under some schedules of periodic exposure, threshold shifts increase over the first few days of exposure, then recover as much as 30 dB as the exposure continues.  相似文献   

5.
Forty-one chinchillas, divided into seven groups, were exposed to 1, 10, or 100 noise impulses (one every 3s) having peak intensities of 131, 135, 139, or 147 dB. Hearing thresholds were measured in each animal before and after exposure using an avoidance conditioning procedure; a surface preparation of the cochlear sensory epithelia was performed approximately 90 days after exposure. There was generally an orderly relation between the amount of permanent threshold shift and the severity of exposure, and a general agreement between averaged histological data and the audiometric data. For the impulses used in this study, there is a range of intensities which is bounded on the high side by the intensity which just produces injury with single impulse exposures and bounded on the low side by a critical intensity below which the injury potential drops precipitously with a reduction of impulse intensity. This region is only about 10-15 dB wide for the exposure conditions of this experiment. Within this region, the threshold of injury is a constant total energy; i.e., 10-dB change of intensity implies a tenfold change in the number of impulses for threshold injury. Detailed relations between temporary and permanent threshold shift, cochlear pathology, and exposure variables are discussed, as are the implications of these data to the development of exposure criteria.  相似文献   

6.
Estimates of auditory temporal resolution were obtained from normal chinchillas using sinusoidally amplitude modulated noise. Afterwards, the animals were exposed to noise whose bandwidth was progressively increased toward the low frequencies in octave steps. The first exposure was to an octave band of noise centered at 8 kHz. Three additional octave bands of noise were subsequently added to the original exposure in order to progressively increase the extent of the high-frequency hearing loss. The first exposure produced a temporary hearing loss of 50 to 60 dB near 8 kHz and elevated the amplitude modulation thresholds primarily at intermediate (128 Hz) modulation frequencies. Successive noise exposures extended the temporary hearing loss toward lower frequencies, but there was little further deterioration in the amplitude modulation function until the last exposure when the hearing loss spread to 1 kHz. The degradation in the amplitude modulation function observed after the last exposure, however, was due to a reduction in the sensation level of the test signal rather than to a decrease in the hearing bandwidth. The results of this study suggest that the high-frequency regions of the cochlea may be important for temporal resolution.  相似文献   

7.
Measurements of group delay were made extracellularly from spiral ganglion cells in the 3.7 to 5.0-mm region of the guinea pig cochlea, using sinusoidally amplitude modulated tones with constant modulating frequency (100 Hz) and depth of modulation (0.19). Threshold cochlear tuning was accompanied by frequency-dependent group delays. The group delay on the low-frequency tail was independent of carrier frequency; the interunit variation was 0.28-1.28 ms. The difference in group delay between CF and the low-frequency tail decreased as the CF threshold increased (-0.09 +/- 0.02 ms per 10 dB, beginning at 0.62 +/- 0.07 ms at 0 dB SPL). The group delay decreased above CF; at the units' maximum frequency it was less than the low-frequency tail value, and was sometimes negative. Following arterial injections of furosemide the CF threshold increased and the group delay peak decreased; the low-frequency tail was unaffected. The group delay decreased with increasing intensity; the reduction near and above CF was not only larger than that on the low-frequency tail, but also the change at 5-10 dB above threshold was far greater than expected from the Q10dB of the suprathreshold iso-rate tuning curves. A minimum-phase analysis suggested that the group delay response above CF, together with its nonlinear behavior, can be accounted for by a high-frequency, level-independent, amplitude plateau, in combination with the single unit, amplitude nonlinearity which is known to exist above CF.  相似文献   

8.
Exposure of chinchillas to noise that is continuous results in auditory damage that is a function of the total energy of the exposure, provided that a critical exposure is not exceeded. Breaking a continuous exposure into 45 exposure periods given once a day Monday through Friday for 9 weeks (an interrupted exposure) is shown to result in a slight reduction in damage, but breaking each of the 45 daily exposures into short noise bursts presented at regular intervals (interrupted and intermittent exposures) reduces the damage more significantly. The shorter the noise bursts, the greater will be the reduction in damage. Too few data are available to establish a principle that will predict correctly the amount of reduction afforded by a particular temporal pattern; while the "equal energy" principle predicts no reduction at all, the "mean level" principle derived from studies of temporary threshold shifts (e.g., a noise at 80 dB half the time and at 100 dB half the time has a mean level of 90 dB and will have the same effect as a continuous 90-dB noise) predicts too much reduction.  相似文献   

9.
Cochlear latency has been evaluated in young adults by time-frequency analysis of transient evoked otoacoustic emissions recorded using the nonlinear acquisition mode at different levels of the click stimulus. Objective, even if model-dependent, estimates of cochlear tuning have been obtained from the otoacoustic latency estimates. Transmission-line cochlear models predict that the transient-evoked otoacoustic emission latency is dependent on the stimulus level, because the bandwidth of the cochlear filter (tuning) depends on the local cochlear excitation level due to nonlinear damping. The results of this study confirm the increase of tuning with increasing frequency and show clearly the decrease of latency and tuning with increasing stimulus level. This decrease is consistent with the expected relation between the slowing down of the traveling wave near the tonotopic place and the cochlear excitation amplitude predicted by cochlear models including nonlinear damping. More specifically, these results support the models in which nonlinear damping consists of a quadratic term and a constant positive term.  相似文献   

10.
Changes in hearing sensitivity and cochlear damage were determined in two groups of chinchillas exposed to an octave band of noise (OBN) centered at 0.5 kHz, 95 dB SPL on two different schedules: 6 h per day for 36 days, or 15 min/h for 144 days. Hearing sensitivity was measured behaviorally at 1/4-oct frequency intervals from 0.125 to 16.0 kHz before, during, and for a period of 1 to 2 months after the exposure, at which time the animals' cochleas were fixed and prepared for microscopic examination. Cochlear damage was determined by counts of missing sensory cells. Both exposures produced an initial shift of thresholds of 35-45 dB; however, after a few days of exposure, thresholds began to decline and eventually recovered to within 10-15 dB of original baseline values even though the exposure continued. Measures of recovery made after completion of the exposures indicated minimal permanent threshold shifts in all animals. The behavioral and anatomical data indicated that these intermittent exposures produced less temporary and permanent hearing loss and less cochlear damage than continuous exposures of equal energy.  相似文献   

11.
The mechanical waveform of the basilar membrane. IV. Tone and noise stimuli   总被引:1,自引:0,他引:1  
Analysis of mechanical cochlear responses to wide bands of random noise clarifies many effects of cochlear nonlinearity. The previous paper [de Boer and Nuttall, J. Acoust. Soc. Am. 107, 1497-1507 (2000)] illustrates how closely results of computations in a nonlinear cochlear model agree with responses from physiological experiments. In the present paper results for tone stimuli are reported. It was found that the measured frequency response for pure tones differs little from the frequency response associated with a noise signal. For strong stimuli, well into the nonlinear region, tones have to be presented at a specific level with respect to the noise for this to be true. In this report the nonlinear cochlear model originally developed for noise analysis was modified to accommodate pure tones. For this purpose the efficiency with which outer hair cells modify the basilar-membrane response was made into a function of cochlear location based on local excitation. For each experiment, the modified model is able to account for the experimental findings, within 1 or 2 dB. Therefore, the model explains why the type of filtering that tones undergo in the cochlea is essentially the same as that for noise signals (provided the tones are presented at the appropriate level).  相似文献   

12.
A distortion product otoacoustic emission (DPOAE) suppression tuning curve (STC) shows the minimum level of suppressor tone that is required to reduce DPOAE level by a fixed amount, as a function of suppressor frequency. Several years ago, Mills [J. Acoust. Soc. Am. 103, 507-523 (1998)] derived, theoretically, an approximately linear relationship between the tip-to-tail suppressor level difference on a DPOAE STC, and the gain of the cochlear amplifier, defined as the maximum increase in the active over the passive basilar membrane (BM) response. In this paper, preliminary data from adult human subjects are presented that establish a correlation between this tip-to-tail DPOAE STC difference and the threshold of hearing, the latter measured at the frequency of the f2 primary tone. Assuming that both suppression and the DPOAE are by-products of active, nonlinear BM dynamics, the above result suggests that threshold elevation in mild levels of hearing loss may be attributed, in part, to a reduction of cochlear amplifier gain, which is detectable with the suppression paradigm.  相似文献   

13.
Spontaneous otoacoustic emissions (SOAEs) were studied in humans during and after postural changes. The subjects were tilted from upright to a recumbent position (head down 30 degrees) and upright again in a 6-min period. The SOAEs were recorded continuously and analyzed off-line. The tilting caused a change in the SOAE spectrum for all subjects. Frequency shifts of 10 Hz, together with changes of amplitude (5 dB) and width (5 Hz), were typically observed. However, these changes were observed in both directions (including the appearance and disappearance of emission peaks). The most substantial changes occurred in the frequency region below 2 kHz. An increase of the intracranial pressure, and consequently of the intracochlear fluid pressure, is thought to result in an increased stiffness of the cochlear windows, which is probably mainly responsible for the SOAE changes observed after the downward turn. The time for the spectrum to regain stability after a postural change differed between the two maneuvers: 1 min for the downward and less than 10 s for the upward turn.  相似文献   

14.
A California sea lion (Zalophus californianus) was tested in a behavioral procedure to assess noise-induced temporary threshold shift (TTS) in air. Octave band fatiguing noise was varied in both duration (1.5-50 min) and level (94-133 dB re 20 muPa) to generate a variety of equal sound exposure level conditions. Hearing thresholds were measured at the center frequency of the noise (2500 Hz) before, immediately after, and 24 h following exposure. Threshold shifts generated from 192 exposures ranged up to 30 dB. Estimates of TTS onset [159 dB re (20 muPa)(2) s] and growth (2.5 dB of TTS per dB of noise increase) were determined using an exponential function. Recovery for threshold shifts greater than 20 dB followed an 8.8 dB per log(min) linear function. Repeated testing indicated possible permanent threshold shift at the test frequency, but a later audiogram revealed no shift at this frequency or higher. Sea lions appear to be equally susceptible to noise in air and in water, provided that the noise exposure levels are referenced to absolute sound detection thresholds in both media. These data provide a framework within which to consider effects arising from more intense and/or sustained exposures.  相似文献   

15.
In Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis, the effects of fatiguing noise on hearing thresholds at frequencies of 32, 45, 64, and 128 kHz were investigated. The noise parameters were: 0.5-oct bandwidth, -1 to +0.5 oct relative to the test frequency, 150 dB re 1 μPa (140-160 dB re 1 μPa in one measurement series), with 1-30 min exposure time. Thresholds were evaluated using the evoked-potential technique allowing the tracing of threshold variations with a temporal resolution better than 1 min. The most effective fatiguing noise was centered at 0.5 octave below the test frequency. The temporary threshold shift (TTS) depended on the frequencies of the fatiguing noise and test signal: The lower the frequencies, the bigger the noise effect. The time-to-level trade of the noise effect was incomplete: the change of noise level by 20 dB resulted in a change of TTS level by nearly 20 dB, whereas the tenfold change of noise duration resulted in a TTS increase by 3.8-5.8 dB.  相似文献   

16.
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schr?dinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.  相似文献   

17.
Information regarding the relation of human temporary threshold shift (TTS) to properties of steady-state and intermittent noise published since the 1966 appearance of the CHABA damage risk contours is reviewed. The review focuses on results from four investigative areas relevant to potential revision of the CHABA contours including effects of long-duration exposure and asymptotic threshold shifts (ATS); equivalent quiet and/or safe noise levels; effects of intermittency; and use of noise-induced temporary threshold shift (NITTS) to predict susceptibility to noise-induced permanent threshold shift (NIPTS). These data indicate that two of three major postulates on which the original contours were based are not valid. First, recovery from TTS is not independent of the conditions that produced the TTS as was assumed. Second, the assumption that all exposures that produce equal TTS2 are equally hazardous is not substantiated. The third postulate was that NIPTS produced by 10 years of daily exposure is approximately equal to the TTS2 produced by the same noise after an 8-h exposure. Based upon several TTS experiments showing that TTS reaches an asymptote after about 8 h of exposure, the third CHABA postulate can be reworded to state the hypothesis that ATS produced by sound of fixed level and spectrum represents an upper bound on PTS produced by that sound regardless of the exposure duration or the number of times exposed. This hypothesis has a strong, logical foundation if ATS represents a true asymptote for TTS, not a temporary plateau, and if threshold shifts do not increase after the noise exposure ceases.  相似文献   

18.
Acoustic emissions in the form of cubic difference tones (CDT's), 2f1-f2, were measured in the ear canals of gerbils and cats. The state of the cochlea was manipulated by means of acute exposure to noise and was monitored with the aid of the whole-nerve response to tone pips. The resulting shifts in the levels of emissions generated by pairs of primary tones of equal intensity were then compared to the corresponding threshold shifts of the whole-nerve response across frequency. Data obtained from normal ears before injury indicate that the absolute thresholds of the whole-nerve responses across frequency are not necessarily good predictors of the absolute levels of CDT emissions generated by 70- and 80-dB SPL primaries. While high emission levels were often linked to low whole-nerve thresholds in pre-exposed ears, instances of animals with sensitive whole-nerve thresholds coupled with very weak emissions were also found. Conversely, animals with poor whole-nerve thresholds (shifted by up to 30 dB) could occasionally have high levels of emissions. After acute noise injury, however, the shifts of emission levels as a function of the center frequency of the primary-tone pair largely corresponded to the threshold shifts seen in the whole-nerve response. In other words, the temporary level shift of an acoustic emission largely reflected the acute change to a specific cochlear region associated with the primary frequencies.  相似文献   

19.
We theoretically and experimentally analyze the influence of the splitting ratio and the input power on the noise reduction capability of an asymmetric nonlinear optical loop mirror (NOLM) for different input noise levels. An easy method to calculate the optimum parameters for noise reduction is also presented. The best noise reduction is found at NOLM input powers at which the nonlinear transfer function has a slope close to zero. Additionally, the splitting ratio of the NOLM has to be adapted to its input noise level to suppress amplitude fluctuations effectively. Since the noise reduction by the NOLM is due to the Kerr nonlinearity, which has a timescale below a few femtoseconds, the noise reduction is applicable to short pulses in the picosecond and femtosecond range. This makes the NOLM applicable as an optical regenerator in an optical data transmission system at high bit rates, such as 160 GBit/s.  相似文献   

20.
Using an audiometer,the effect of the noise level upon temporarythreshold shift(TTS)for five trained normal subjects(left ear only)was studied.The measurements were carried out after 6 min exposure(in third octave band)for different sound pressure levels ranging between 75-105 dB at three test fre-quencies 2,3,and 4 kHz.The results indicated that at exposure to noise of soundpressure level(SPL)above 85 dB,TTS increases linearly with ths SPL for all thetest frequencies.The work had extended to study the recovery curves for the sameears.The results indicated that the reduction in TTS on doubling the recoverytimes,for the two sound pressure levels 95 dB and 105 dB,occurs at a rate of near-ly 3 dB.The comparison of the recovery curve at 3 kHz with that calculated usingWard's general equation for recovery was made.Finally,to study the values ofTTS produced by exposure to certain noise at different test frequencies,distribu-tion curves for two recovery times were plotted representing TTS values,for anexposure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号