首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce partitioned Runge–Kutta (PRK) methods as geometric integrators in the Runge–Kutta–Munthe-Kaas (RKMK) method hierarchy. This is done by first noticing that tangent and cotangent bundles are the natural domains for the differential equations to be solved. Next, we equip the (co)tangent bundle of a Lie group with a group structure and treat it as a Lie group. The structure of the differential equations on the (co)tangent-bundle Lie group is such that partitioned versions of the RKMK methods are naturally introduced. Numerical examples are included to illustrate the new methods.  相似文献   

2.
This paper deals with the adaptation of Runge—Kutta methods to the numerical solution of nonstiff initial value problems for delay differential equations. We consider the interpolation procedure that was proposed in In 't Hout [8], and prove the new and positive result that for any given Runge—Kutta method its adaptation to delay differential equations by means of this interpolation procedure has an order of convergence equal to min {p,q}, where p denotes the order of consistency of the Runge—Kutta method and q is the number of support points of the interpolation procedure.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
The successful use of mono-implicit Runge—Kutta methods has been demonstrated by several researchers who have employed these methods in software packages for the numerical solution of boundary value ordinary differential equations. However, these methods are only applicable to first order systems of equations while many boundary value systems involve higher order equations. While it is straightforward to convert such systems to first order, several advantages, including substantial gains in efficiency, higher continuity of the approximate solution, and lower storage requirements, are realized when the equations can be treated in their original higher order form. In this paper, we consider generalizations of mono-implicit Runge—Kutta methods, called mono-implicit Runge—Kutta—Nyström methods, suitable for systems of second order ordinary differential equations having the general form, y(t) = f(t,y(t),y(t)), and derive optimal symmetric methods of orders two, four, and six. We also introduce continuous mono-implicit Runge—Kutta—Nyström methods which allow us to provide continuous solution and derivative approximations. Numerical results are included to demonstrate the effectiveness of these methods; savings of 65% are attained in some instances.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
Using the property of inherent Runge—Kutta stability, it is possible to construct diagonally implicit general linear methods with stability regions exactly the same as for Runge—Kutta methods. In addition to A-stable methods found in this way, it is also possible to construct explicit methods with stability regions identical to those of explicit Runge—Kutta methods. The use of doubly companion matrices makes it possible to find all explicit and diagonally-implicit methods possessing the inherent Runge—Kutta stability property.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
We analyse some Taylor and Runge—Kutta type methods for computing one-dimensional integral manifolds, i.e. solutions to ODEs and DAEs. The distribution defining the solutions is taken to be defined only on the relevant manifold and hence all the intermediate points occuring in the computations are projected orthogonally to the manifold. We analyse the order of such methods, and somewhat surprisingly there does not appear any new order conditions for the Runge—Kutta methods in our context, at least up to order 4. The analysis shows that some terms appearing in the error expansions can be quite naturally expressed in terms of standard notions of Riemannian geometry. The numerical examples show that the methods work reliably and moreover produce qualitatively correct results for Hamiltonian systems although the methods are not symplectic.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
In the past few years, a number of Lie-group methods based on Runge—Kutta schemes have been proposed. One might extrapolate that using a selfadjoint Runge—Kutta scheme yields a Lie-group selfadjoint scheme, but this is generally not the case: Lie-group methods depend on the choice of a coordinate chart which might fail to comply to selfadjointness.In this paper we discuss Lie-group methods and their dependence on centering coordinate charts. The definition of the adjoint of a numerical method is thus subordinate to the method itself and the choice of the chart. We study Lie-group numerical methods and their adjoints, and define selfadjoint numerical methods. The latter are defined in terms of classical selfadjoint Runge—Kutta schemes and symmetric coordinates, based on geodesic or on flow midpoint. As result, the proposed selfadjoint Lie-group numerical schemes obey time-symmetry both for linear and nonlinear problems.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
This paper deals with a geometric technique to construct numerical schemes for differential equations that inherit Lie symmetries. The moving frame method enables one to adjust existing numerical schemes in a geometric manner and systematically construct proper invariant versions of them. Invariantization works as an adaptive transformation on numerical solutions, improving their accuracy greatly. Error reduction in the Runge–Kutta method by invariantization is studied through several applications including a harmonic oscillator and a Hamiltonian system. AMS subject classification (2000)  65L12, 70G65  相似文献   

8.
An approach is described to the numerical solution of order conditions for Runge–Kutta methods whose solutions evolve on a given manifold. This approach is based on least squares minimization using the Levenberg–Marquardt algorithm. Methods of order four and five are constructed and numerical experiments are presented which confirm that the derived methods have the expected order of accuracy.  相似文献   

9.
This paper deals with the construction of implicit symplectic partitioned Runge–Kutta methods (PRKM) of high order for separable and general partitioned Hamiltonian systems. The main tool is a generalized W-transformation for PRKM based on different quadrature formulas. Methods of high order and special properties can be determined using the transformed coefficient matrices. Examples are given.  相似文献   

10.
Almost Runge–Kutta methods were introduced to obtain many of the advantages of Runge–Kutta methods without their disadvantages. We consider the construction of fourth order methods of this type with a special choice of the free parameters to ensure that, at least for constant stepsize, order 5 behaviour is achieved. It is shown how this can be extended to variable stepsize.  相似文献   

11.
A family of two-sided Runge—Kutta formulas accurate to sixth order is constructed for numerical solution of the Cauchy problem for second-order ordinary differential equations, which are solved for the highest derivative and have a sufficiently smooth right-hand side. Two-sided approximations to the sought solution are obtained after up to nine evaluations of the right-hand side of the differential equation in each integration step. The efficiency of the proposed formula is demonstrated in application to two test examples.Sumy Teachers' College. Kiev Teachers' College. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 68, pp. 45–51, 1989.  相似文献   

12.
In this article a simple form of expressing and studying the order conditions to be satisfied by starting algorithms for Runge–Kutta methods, which use information from the two previous steps is presented. In particular, starting algorithms of highest order for Runge–Kutta–Gauss methods up to seven stages are derived. Some numerical experiments with Hamiltonian systems to compare the behaviour of the new starting algorithms with other existing ones are presented.  相似文献   

13.
In this paper, a new class of Runge–Kutta methods is introduced. Some basic properties of this subgroup of algebraically stable methods are presented and a complete parametric representation is given. Necessary and sufficient order conditions for lower order methods as well as sufficient order conditions for higher order methods are derived yielding a significantly reduced number of conditions when compared with general Runge–Kutta methods. Design examples conclude this paper.  相似文献   

14.
A class of general linear methods is derived for application to non-stiff ordinary differential equations. A property known as inherent Runge–Kutta stability guarantees the stability regions of these methods are the same as for Runge–Kutta methods. Methods with this property have high stage order which enables asymptotically correct error estimates and high order interpolants to be computed conveniently. Some preliminary numerical experiments are given comparing these methods with some well known Runge–Kutta methods.  相似文献   

15.
There are several applications in which one needs to integrate a system of ODEs whose solution is an n×p matrix with orthonormal columns. In recent papers algorithms of arithmetic complexity order np 2 have been proposed. The class of Lie group integrators may seem like a worth while alternative for this class of problems, but it has not been clear how to implement such methods with O(np 2) complexity. In this paper we show how Lie group methods can be implemented in a computationally competitive way, by exploiting that analytic functions of n×n matrices of rank 2p can be computed with O(np 2) complexity.  相似文献   

16.
The weak approximation of the solution of a system of Stratonovich stochastic differential equations with a m–dimensional Wiener process is studied. Therefore, a new class of stochastic Runge–Kutta methods is introduced. As the main novelty, the number of stages does not depend on the dimension m of the driving Wiener process which reduces the computational effort significantly. The colored rooted tree analysis due to the author is applied to determine order conditions for the new stochastic Runge–Kutta methods assuring convergence with order two in the weak sense. Further, some coefficients for second order stochastic Runge–Kutta schemes are calculated explicitly. AMS subject classification (2000)  65C30, 65L06, 60H35, 60H10  相似文献   

17.
In this paper we deal with the numerical solutions of Runge–Kutta methods for first-order periodic boundary value differential equations with piecewise constant arguments. The numerical solution is given by the numerical Green’s function. It is shown that Runge–Kutta methods preserve their original order for first-order periodic boundary value differential equations with piecewise constant arguments. We give the conditions under which the numerical solutions preserve some properties of the analytic solutions, e.g., uniqueness and comparison theorems. Finally, some experiments are given to illustrate our results.  相似文献   

18.
Dormand, Prince and their colleagues [3–5] showed in a sequence of papers that the approximation of an initial value differential system propagated by a Runge–Kutta pair, together with a continuous approximation obtained using additional derivative values could be utilized to obtain estimates of the global error. They illustrated the results using pairs of orders p–1 and p for several values of p. The current authors [13] have developed a more direct representation of the order conditions, characterized families of global error estimators for Runge–Kutta pairs of arbitrary values of p, and showed that efficient global error estimating Runge–Kutta methods are based on the nodes of a Lobatto quadrature formula. Here, formulas for a good 7, 8 pair, interpolants of each of orders 7 and 8, and global error estimators of orders 10 and 12 illustrate how to obtain global error estimates of orders 9, 10, or 11, for arbitrary initial value systems. One set of graphs indicates that the stated order of the global error estimators is achieved numerically, and a second set illustrates the relative efficiency for several global error estimators when the approximation is propagated with a variable stepsize.  相似文献   

19.
This paper deals with the characterizations and construction of Poisson/symplectic and (φ−1)-symmetric implicit high-order multi-revolution Runge–Kutta methods (MRRKMs). The basic tool is a modified W-transformation based on quadrature formulas and orthogonal polynomials. Two sufficient conditions can be obtained under which MRRKMs are Poisson/symplectic or (φ−1)-symmetric. We construct two classes of high order implicit MRRKMs by using these sufficient conditions. Our results can be considered as an extension of related results of the standard Runge–Kutta methods in some references.  相似文献   

20.
Systems of functional–differential and functional equations occur in many biological, control and physics problems. They also include functional–differential equations of neutral type as special cases. Based on the continuous extension of the Runge–Kutta method for delay differential equations and the collocation method for functional equations, numerical methods for solving the initial value problems of systems of functional–differential and functional equations are formulated. Comprehensive analysis of the order of approximation and the numerical stability are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号