首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schroer J  Wagner S  Abram U 《Inorganic chemistry》2010,49(22):10694-10701
Reactions of 2-(diphenylphosphinomethyl)aniline, H(2)L(2), with (NBu(4))[ReOCl(4)] yield different oxo rhenium(V) complexes depending on the conditions applied. This comprises monomeric compounds such as [ReOCl(3)(H(2)L(2))] (1), [ReOCl(2)(OMe)(H(2)L(2))] (2), or [ReO(2)(H(2)L(2))(2)]Cl (5) as well as the dimeric μ-oxo complex [{ReOCl(2)(H(2)L(2))}(2)]O] (3) and the oxo-bridged trimer [{ReOCl(H(2)L(2))}O](3) (4). The latter compound represents the first example of a hitherto unknown trinuclear, cyclic oxo(V) core. [{ReOCl(H(2)L(2))}O](3) contains a tensed 6-membered metallacycle, which readily undergoes rearrangements and reactions with additional ligands. Compounds of the compositions 5 and [ReO(2)(H(2)L(2))(H(2)L(1))]Cl (6) were isolated either from the decomposition of 4 in CH(2)Cl(2)/n-pentane or from reactions with 2-(diphenylphosphino)aniline, H(2)L(1).  相似文献   

2.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

3.
Rhenium and technetium complexes with N,N-dialkyl-N'-benzoylthioureas   总被引:1,自引:0,他引:1  
Nguyen HH  Abram U 《Inorganic chemistry》2007,46(13):5310-5319
N,N-Dialkyl-N'-benzoylthioureas, HR(1)R(2)btu, react under single deprotonation and form air-stable chelate complexes with common rhenium or technetium complexes such as (NBu(4))[MOCl(4)] (M = Re, Tc) or [ReOCl(3)(PPh(3))(2)]. Compositions and molecular structures of the products are strongly dependent on the precursors used and the reaction conditions applied. Reactions with [ReOCl(3)(PPh(3))(2)] in CH(2)Cl(2) give complexes of the general formula [ReOCl(2)(R(1)R(2)btu)(PPh(3))] (3), with the benzoyl oxygen atom of the chelating benzoylthiourea being trans to the oxo ligand, and/or Re(III) complexes of the composition [ReCl(2)(R(1)R(2)btu)(PPh(3))(2)] (4) with the PPh(3) ligands in trans positions to each other. In polar solvents such as MeOH, EtOH or acetone, corresponding reactions without addition of a supporting base only result in intractable brown solutions, from which no crystalline complexes could be isolated. The addition of NEt(3), however, allows the isolation of the bis-chelates [ReOCl(R(1)R(2)btu)(2)] (1) in good yields. In this type of complex, one of the chelating R(1)R(2)btu- ligands coordinates equatorially, while the second occupies the position trans to the oxo ligand with its oxygen atom. The latter compounds can also be prepared from (NBu(4))[ReOCl(4)] in MeOH when no base is added, while the addition of NEt(3) results in the formation of [ReO(OMe)(R(1)R(2)btu)(2)] (5) complexes with the methoxo ligand trans to O(2-). Compounds of the type 5 can alternatively be prepared by heating 1 in MeOH with addition of NEt(3). A reversible conversion of 5 into oxo-bridged dimers of the composition [{ReO(R(1)R(1)btu)(2)}(2)O] (6) is observed in water-containing solvents. Starting from (NBu(4))[TcOCl(4)], a series of technetium complexes of the type [TcOCl(R(1)R(2)btu)(2)] (2) could be prepared. The structures of such compounds are similar to those of the rhenium analogues 1. Reduction of 2 with PPh(3) in CH(2)Cl(2) gives Tc(III) complexes of the composition [TcCl(R(1)R(2)btu)(2)(PPh(3))] (7) having the chloro and PPh(3) ligands in cis positions. When this reaction is performed in the presence of excess chelating ligand, the Tc(III) tris-chelates [Tc(R(1)R(2)btu)(3)] (8) are formed.  相似文献   

4.
The trioxo [ReO(3){SO(3)C(pz)(3)}] (1) (pz = pyrazolyl) and oxo [ReOCl{SO(3)C(pz)(3)}(PPh(3))]Cl (2) compounds with tris(pyrazolyl)methanesulfonate were obtained by treatment of Re(2)O(7) or [ReOCl(3)(PPh(3))(2)], respectively, with Li[SO(3)C(pz)(3)], whereas [ReCl(3){HC(pz)(3)}] (3), [ReCl(3){HC(3,5-Me(2)pz)(3)}] (4) and [ReCl(4){eta(2)-HC(pz)(3)}] (5) were prepared by reaction of [ReOCl(3)(PPh(3))(2)] (3,4) or [ReCl(4)(NCMe)(2)] (5) with hydrotris(pyrazolyl)methane HC(pz)(3) (3,5) or hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me(2)pz)(3) (4). [ReO{SO(3)C(pz)(3)}{OC(CH(3))(2)pz}][ReO(4)] 6, with a chelated pyrazolyl-alkoxide, was derived from an unprecedented ketone-pyrazolyl coupling on reaction of crude 1 with acetone. The compounds have been characterized by elemental analyses, IR and NMR spectroscopies, FAB-MS spectrometry and cyclic voltammetry and, in the case of 5 and 6, also by single-crystal X-ray diffraction. The electrochemical E(L) Lever parameter has been estimated, for the first time, for the SO(3)C(pz)(3)(-) and oxo ligands allowing the measurement of their electron-donor character and comparison with other ligands. Compounds 1, 2 and 6 appear to be the first tris(pyrazolyl)methanesulfonate complexes of rhenium to be reported.  相似文献   

5.
Rhenium and technetium are known for their useful applications in nuclear medicine with similar properties. In this study, new diamido dipyridino (N(4)) water-soluble ligands (2-C(5)H(4)NCH(2)NHCO)(2)CH(2), 1 (L(1)H2), (2-C(5)H(4)NNHNHCO)(2)CH(2), 2, and [2-C(5)H(4)N(+)(O)(-)CH(2)NHCO](2)CH(2), 3, were synthesized. Reaction of L(1)H2 with ReOCl(3)(PPh(3))(2) resulted in the novel six-coordinated rhenium(V) complex, trans-ReO(L(1))(OEt), 4. The complex was characterized by spectroscopic methods, and its X-ray crystallographic analysis revealed that rhenium is coordinated to four nitrogen atoms of the ligand and to two oxygen atoms from the deprotonated ethanol and the oxo group respectively in a distorted octahedral geometry. In solution, complex 4 was transformed to a new complex 5, which was proved to be the dinuclear complex mu-oxo [ReO(L(1))](2)O. Reaction of 1 with [n-Bu(4)N][ReOCl(4)] resulted in the neutral complex 6, trans-[ReO(L(1))]Cl. Similarly, when ligand 1 was reacted with [n-Bu(4)N][(99g)TcOCl(4)], the neutral trans-[(99)TcO(L(1))]Cl complex 7 was formed, which upon dissolution transformed into a cationic complex 8, trans-[(99)TcO(L(1))(OH(2))](+)Cl(-). The single-crystal X-ray structure of 8 reveals that the coordination sphere about technetium is a distorted octahedron with four nitrogen atoms in the equitorial plane, while doubly bonded oxygen and coordinated water occupy the apical positions. Further dissolution of 8 resulted in the formation of dinuclear mu-oxo [TcO(L(1))](2)O, 9. This study shows that Tc and Re have similar metal core structures in solution for diamido dipyridino systems, besides similarity in geometrical structure, proved by the X-ray structures on the same ligands.  相似文献   

6.
Convenient methods to prepare solvated rhenium oxochlorides are described; these compounds should serve as useful starting materials for rhenium chemistry. Treatment of perrhenic acid, HReO(4), with chlorotrimethylsilane or with thionyl chloride, followed by addition of tetrahydrofuran, forms the new oxochloride complexes ReO(3)Cl(THF)(2) and ReOCl(4)(THF), respectively. Small amounts of two dinuclear oxochlorides, which evidently resulted from adventitious hydrolysis, were also isolated: Re(2)O(3)Cl(6)L(2), where L = THF or H(2)O. All four compounds were characterized by X-ray crystallography. The rhenium(vii) complex ReO(3)Cl(THF)(2) adopts a distorted octahedral geometry in which the three oxo ligands are in a facial arrangement; the rhenium(vi) complex ReOCl(4)(THF) adopts a trans octahedral structure. The two dinuclear rhenium(vi) compounds both have a single, nearly linear, bridging oxo group; on each Re center, the three terminal chlorides adopt a mer arrangement, and the terminal oxo and the coordinated Lewis base are mutually trans. The water ligand in the aqua complex is hydrogen bonded to nearby THF molecules. IR data are given.  相似文献   

7.
Benzil bis(semicarbazone), H2L(1), reacts with common rhenium(V) nitrido complexes such as [ReNCl2(PPh3)2] or [ReNCl2(PR2Ph)3] (R = Me, Et) under the release of one semicarbazone unit, cyclization, and formation of stable triazine-3-onato complexes of rhenium(V). The resulting 5,6-diphenyltriazine-3-one, HL (2), acts as monodentate or chelating, monoanionic ligand depending on the reaction conditions applied. Complexes of the compositions [ReNCl(L(2)-kappaN(2),kappaO)(PR2Ph)2] (R = Me, Et) or [ReN(L(2)-kappa N(2),O)(L(2)-kappaN(2))(PPh3)2] were isolated. The N(2) nitrogen atom is the preferred binding site of the monodentate form of the ligand. This contrasts the behavior of the analogous thione HL(3), which preferably coordinates to nitridorhenium(V) centers via the sulfur atom. HL(3) is readily formed by the abstraction of methanol from 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione, H2L(3)OCH 3. In the presence of [ReNCl2(PPh3)2] or [ReNCl2(PR2Ph)3] complexes (R = Me, Et), this reaction yields stable complexes of the composition [ReN(L(3)-kappaN(2),kappaS)(L(3)-kappaS)(PR2Ph)2] (R = Me, Et, Ph) in good yields. Reduction of the metal atom and formation of the seven-coordinate [Re(PPh3)(L(3)-kappaN(2),kappaS)3] was observed during reactions of H2L(3)OCH3 with [ReOCl3(PPh3)2] or [ReO2I(PPh3)2], while no rhenium complexes could be isolated during similar reactions with H2L(1), although cyclization of the bis(semicarbazone) and the formation of H 2L(2)OEt were observed.  相似文献   

8.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

9.
Substitution reactions of rhenium(V) oxo precursors [ReOCl3(PPh3)2] or [NBu4][ReOCl4] with the bidentate acetylacetone-derived ketoamine ligands APOH = 4-anilino-3-penten-2-one, DPOH = 4-[2,6-dimethylanilino]-3-penten-2-one, and MTPOH = 4-[2-(methylthio)anilino]-3-penten-2-one gave the complexes [ReO(APO)Cl2(PPh3)] (1), [ReO(DPO)Cl2(PPh3)] (2), and [NBu4][ReOLCl3] (3, L = APO; 4, L = DPO; 5, L = MTPO), respectively. All complexes exhibit only one ketoamino chelate, independent of the amount of ligand added to the rhenium precursors. The complexes were characterized by 1H and 13C NMR spectroscopy. X-ray crystal structures of the complexes 1, 2, 4, and 5, including that of MTPOH, were determined, revealing the trans position of the two oxygen atoms and the trans-Cl,Cl conformation in 1 and 2, in contrast to most other rhenium complexes of this type where the cis-Cl,Cl conformation is observed. Coordination of the potentially tridentate ligand MTPOH in 5 is bidentate with a dangling thioether substituent. Compound 2 shows catalytic activity in the oxidation of cis-cyclooctene with tert-butylhydroperoxide.  相似文献   

10.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RC(S)NHP(S)(OiPr)(2) [R = morpholin-N-yl (HL(a)), piperidin-N-yl (HL(b)), NH(2) (HL(c)), PhCH(2)NH (HL(d))] with Cu(PPh(3))(3)I in aqueous EtOH/CH(2)Cl(2) leads to mononuclear [Cu(PPh(3))(2)L-S,S'] complexes. Using copper(i) iodide instead of Cu(PPh(3))(3)I, polynuclear complexes [Cu(n)(L-S,S')(n)] were obtained. The structures of these compounds were investigated by ES-MS, elemental analyses, 1H and 31P NMR in solution, IR and 31P solid-state MAS NMR spectroscopy. The crystal structures of [Cu(3)L(3)(a)] and [Cu(PPh(3))(2)L(b)] were determined by single-crystal X-ray diffraction.  相似文献   

11.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

12.
Cationic Rh(III) complex [Cp(PMe(3))Rh(SiPh(3))(CH(2)Cl(2))]BAr(4)' (1) activates the carbon-carbon bond of aryl and alkyl cyanides (R-CN, where R = Ph, (4-(CF(3))C(6)H(4)), (4-(OMe)C(6)H(4)), Me, (i)Pr, (t)Bu) to produce complexes of the general formula [Cp*(PMe(3))Rh(R)(CNSiPh(3))]BAr(4)'. With the exception of the (t)BuCN case, every reaction proceeds at room temperature (t(1/2) < 1 h for aryl cyanides, t(1/2) < 14 h for alkyl cyanides). A general mechanism is presented on the basis of (1) an X-ray crystal structure determination of an intermediate isolated from the reaction involving 4-methoxybenzonitrile and (2) kinetic studies performed on the C-C bond cleavage of para-substituted aryl cyanides. Initial formation of an eta(1)-nitrile species is observed, followed by conversion to an eta(2)-iminoacyl intermediate, which was observed to undergo migration of R (aryl or alkyl) to rhodium to form the product [Cp*(PMe(3))Rh(R)(CNSiPh(3))]BAr(4)'.  相似文献   

13.
A new example of simultaneous reductive azo bond cleavage and oxidative azo bond formation in an azo-aromatic ligand is introduced. The chemical transformation is achieved by the reaction of Re(2)(CO)(10) with the ligand 2-[(2-N-Arylamino)phenylazo]pyridine (HL(1)). A new and unexpected mononuclear rhenium complex [Re(L(1))(L(3))] (1) was isolated from the above reaction. The new azo-aromatic ligand, H(2)L(3) (H(2)L(3) = 2, 2'-dianilinoazobenzene) is formed in situ from HL(1). A similar reaction of Re(2)(CO)(10) and a closely related azo-ligand, 2,4-ditert-butyl-6-(pyridin-2-ylazo)-phenol (HL(2)), resulted in a seven coordinated compound [Re(L(2)){(L(4))(?-)}(2)] (2; HL(4) = 2-amino-4,6-ditert-butyl-phenol) via reductive cleavage of the azo bond. The complexes have been characterized by using a host of physical methods: X-ray crystallography, nuclear magnetic resonance (NMR), cyclic voltammetry, ultraviolet-visible (UV-vis), electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT). The experimental structures are well reproduced by density functional theory calculations and support the overall electronic structures of the above compounds. Complex 1 is a closed shell singlet, while complex 2 exemplifies a singlet diradical complex where the two partially oxidized aminophenoleto ligands are coupled to each other, yielding the observed diamagnetic ground state. Complexes 1 and 2 showed two successive one-electron redox responses. EPR spectral studies in corroboration with DFT results indicated that all of the redox processes occur at the ligand center without affecting the trivalent state of the metal ion.  相似文献   

14.
N-[(Dialkylamino)(thiocarbonyl)]benzimidoyl chlorides react with functionalized amines such as 2-aminophenol, 2-methylaminopyridine, and 2-aminobenzoic acid in clean and high-yield procedures with the formation of the novel tridentate N-[(N', N'-dialkylamino)(thiocarbonyl)]- N'-substituted benzamidine ligands H2L1, HL2, and H2L3. By starting from (NBu4)[MOCl4] (M = Re, Tc) or [ReOCl3(PPh3)2] and H2L1, a series of oxorhenium(V) and oxotechnetium(V) complexes of the composition [MOCl(L1)] were synthesized and characterized by spectroscopic methods and X-ray crystallography. The monomeric, five-coordinate compounds are air-stable and bind (L1)(2-) tridentate in the equatorial coordination sphere. Dimeric products of the compositions [(ReOCl(L2))2O] and [ReOCl(L3)]2 were isolated during reactions with HL2 and H2L3. While dimerization in [(ReOCl(L2))2O] is established via an oxo bridge, the metal atoms in [ReOCl(L3)]2 are connected by the carboxylic group of the ligand, and the product represents the first example of a high-oxidation state rhenium complex displaying such a bonding feature.  相似文献   

15.
Bis(1-R-imidazol-2-yl)disulfides, (mim(R))2 (R = Ph, Bu(t)), and diselenides, (seim(Mes))2, serve as bidentate N,N-donor ligands for main-group and transition metals. For example, [kappa2-(mim(Bu)(t))2]MCl2 (M = Fe, Co, Ni, Zn), [kappa2-(mim(Ph))2]MCl2 (M = Co, Zn), [kappa2-(mim(Bu)(t))2]CuX (X = Cl, I), and [kappa2-(seim(Mes))2]MCl2 (M = Fe, Co, Ni) are obtained by treatment of (mim(Bu)(t))2 or (seim(Mes))2 with the respective metal halide and have been structurally characterized by X-ray diffraction. On the other hand, the zerovalent nickel complex Ni(PMe3)4 effects cleavage of the disulfide bond of (mim(Bu)(t))2 to give square-planar trans-Ni(PMe3)2(mim(Bu)(t))2 in which the (mim(Bu)(t)) ligands coordinate via nitrogen rather than sulfur, a most uncommon coordination mode for this class of ligands. Although [kappa2-(mim(R))2]MCl2 (M = Fe, Co, Ni, Zn) are not subject to homolytic cleavage of the S-S bond because the tetravalent state is not readily accessible, the observation that [kappa2-(mimPh)2]CoCl2 and [kappa2-(mim(Bu)(t))2]CoCl2 form an equilibrium mixture with the asymmetric disulfide [kappa2-(mim(Ph))(mim(Bu)(t))]CoCl2 indicates that S-S bond cleavage via another mechanism is possible. Likewise, metathesis between disulfide and diselenide ligands is observed in the formation of [kappa2-(mim(Bu)(t))(seim(Mes))]CoCl2 upon treatment of [kappa2-(mim(Bu)(t))2]CoCl2 with [kappa2-(seim(Mes))2]CoCl2.  相似文献   

16.
A number of Re complexes with N,N'-bis(2-pyridylmethyl)ethylenediamine (H2pmen) have been made from [NH4][ReO4]. [ReOCl2(H2pmen)]Cl, [ReOCl(Hpmen)][ReO4], and [ReO2(H2pmen)][ReO4] are related by hydrolysis/HCl substitution. [ReOCl(Hpmen)][ReO4] was structurally characterized and found to contain a water-stable amido-Re bond. Dehydrogenation of the N-donor ligand from each amine to imine with concomitant two-electron reduction of the Re center occurs readily in these systems. With suitable 3-hydroxy-4-pyrones, ternary complexes such as [ReIIICl(ma)(C14H14N4)][ReO4].CH3OH, 5, were made from [NH4][ReO4], H2pmen.4HCl and pyrones in one-pot syntheses. 5, a seven-coordinate ReIII complex, was structurally characterized.  相似文献   

17.
Reaction of the vanadium(V) imide [V(NAr)Cl(3)(THF)] (Ar = 2,6-C(6)H(3)(i)()Pr(2)) with the diamino-pyridine derivative MeC(2-C(5)H(4)N)(CH(2)NHSiMe(2)(t)()Bu)(2) (abbreviated as H(2)N'(2)N(py)) gave modest yields of the vanadium(IV) species [V(NAr)(H(3)N'N' 'N(py))Cl(2)] (1 where H(3)N'N' 'N(py) = MeC(2- C(5)H(4)N)(CH(2)NH(2))(CH(2)NHSiMe(2)(t)()Bu) in which the original H(2)N'(2)N(py) has effectively lost SiMe(2)(t)()Bu (as ClSiMe(2)(t)()Bu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl(3)(py)(2)] (M = Nb or Ta, R = (t)()Bu or Ar) and the dilithium salt Li(2)[N(2)N(py)] (where H(2)N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NHSiMe(3))(2)), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N(2)N(py))(py)] (M = Nb, R = (t)()Bu 2; M = Ta, R = (t)()Bu 3 or Ar 4). The compounds 2-4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N(2)N(py))]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(N(t)()Bu)Cl(N(2)N(py))] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.  相似文献   

18.
A series of dichloroaluminum carboxylates [Cl(2)Al(O(2)CR)](2) (were R = Ph (1a), (t)Bu (1b), CHCH(2) (1c) and C(11)H(23) (1d)) were prepared and extended investigations on their structure and reactivity toward various Lewis bases and H(2)O performed. Compounds [Cl(2)Al(O(2)CR)](2) and their adducts with Lewis bases show a large structural variety, featuring both molecular and ionic forms with different coordination numbers of the metal center and various coordination modes of the carboxylate ligand. Upon addition of a Lewis base of moderate strength the molecular form [Cl(2)Al(O(2)CR)](2) equilibrates with new ionic forms. In the presences of 4-methylpyridine the six-coordinate Lewis acid-base adducts [Cl(2)Al(λ(2)-O(2)CR)(py-Me)(2)] [R = Ph (3a), (t)Bu (3b)] with a chelating carboxylate ligand were formed. The reactions of 1a, 1b, and 1d with 0.33 equiv of H(2)O in THF-toluene solution lead to oxo carboxylates [(Al(3)O)(O(2)CR)(6)(THF)(3)] [AlCl(4)] [where R = Ph (4a(THF)), (t)Bu (4b(THF)), and C(11)H(23) (4d(THF))] in high yield. The similar reaction of 1c in tetrahydrofuran (THF) afforded the chloro(hydroxo)aluminum acrylate [(ClAl)(2)(OH)(O(2)CC(2)H(3))(2) (THF)(4)][AlCl(4)] (5), while the hydrolysis of 1b in MeCN lead to the hydroxoaluminum carboxylate [Al(2)(OH)(O(2)C(t)Bu)(2)(MeCN)(6)][AlCl(4))(3)] (6). All compounds were characterized by elemental analysis, (1)H, (27)Al NMR, and IR spectroscopy, and the molecular structure of 1a, 3a, 3b, 4a(THF), 4b(THF), 4b(py-Me'), 5, and 6 were determined by single-crystal X-ray diffraction. The study provides a platform for testing transformations of secondary building units in Al-Metal-Organic Frameworks toward H(2)O and neutral donor ligands.  相似文献   

19.
The reactions of Zr(NR(2))(4) (1, R = Me; 2, R = Et) with an asymmetrical tridentate pincer type pyrrole ligand precursor [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] and treatment of the derivatives with either PhNCS or PhNCO have been carried out and characterized. Reacting Zr(NR(2))(4) (1, R = Me; 2, R = Et) with [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] generates Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NR(2))(2) (3, R = Me; 4, R = Et) in high yield along with the elimination of 2 equiv of dimethylamine or diethylamine, respectively. Interestingly, while changing the solvent from Et(2)O to CH(2)Cl(2), the complex Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))][C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))]Cl (5) is produced by undergoing C-Cl bond cleavage. Furthermore, reaction of either 3 or 4 with 1 or 2 equiv of PhNCS or PhNCO yields Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NMe(2))[PhNC(NMe(2))S] (6), Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NEt(2))[PhNC(NEt(2))O] (7) and Zr[C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))][PhNC(NEt(2))O](3) (8), respectively. All the aforementioned complexes were characterized by (1)H and (13)C NMR spectrometry and the molecular structures of 5, 6, and 8 have been determined by single-crystal X-ray diffractometry. Complexes 4, 5, and 7 initiated the ethylene polymerization in the presence of MAO as the co-catalyst.  相似文献   

20.
Reaction of [ReOCl3(PPh3)(2)] with HCpz(3) (pz = pyrazole) in dichloromethane leads to the formation of a new Re(iv) complex [ReCl3(HCpz3)]X (X=Cl, [ReO4]) with loss of the rhenium-oxo group. We also report a convenient, high-yield synthetic route to complexes of the type [ReOXn(L)](3-n)+ (X=Cl, Br, n = 2, 3) by the reaction of bis(pyrazolylmethane) and bis(pyrazolylacetate) ligands with [ReOCl3(PPh3)2]. Dinuclear complexes containing the O=Re-O-Re=O group were also isolated and structurally characterised. We have also investigated the reactions of these ligands with diazenide precursors and isolated and characterised complexes of the type [ReClx(N2Ph) (L)(PPh3)] (x = 1,2). The potential applications of these complexes as radiopharmaeuticals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号