首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First-principles studies of Al-Ni intermetallic compounds   总被引:1,自引:0,他引:1  
The structural properties, heats of formation, elastic properties, and electronic structures of Al-Ni intermetallic compounds are analyzed here in detail by using density functional theory. Higher calculated absolute values of heats of formation indicate a very strong chemical interaction between Al and Ni for all Al-Ni intermetallic compounds. According to the computational single crystal elastic constants, all the Al-Ni intermetallic compounds considered here are mechanically stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill (VRH) approximations, and the calculated ratio of shear modulus to bulk modulus indicated that AlNi, Al3Ni, AlNi3 and Al3Ni5 compounds are ductile materials, but Al4Ni3 and Al3Ni2 are brittle materials. With increasing Ni concentration, the bulk modulus of Al-Ni intermetallic compounds increases in a linear manner. The electronic energy band structures confirm that all Al-Ni intermetallic compounds are conductors.  相似文献   

2.
The electronic, structural, elastic, thermal and mechanical properties of Lutetium intermetallic compounds LuX (X = Mg, Cu, Ag, Au, Zn, Cd and Hg) have been studied using ab-initio full potential linear augmented plane wave (FP-LAPW) with the generalized gradient approximation (GGA) in their non magnetic phase. The ground state properties such as lattice constant, bulk modulus, pressure derivatives of bulk modulus are reported in CsCl-(B2 phase) structure. We also report the band structure and density of states at equilibrium lattice constant. The calculated band structures indicate that these intermetallics are metallic in nature. The second order elastic constants of these compounds are also predicted for the first time. The ductility of these compounds is determined by calculating the bulk to shear ratio B/GH.  相似文献   

3.
First-principles calculations based on density functional theory have been performed for exploring the structural and electronic properties of Bi-doped Hg0.75Cd0.25Te (MCT), using the state-of-the-art computational method with the Heyd–Scuseria–Ernzerhof (HSE) of hybrid functional to correct the band gap. Structural relaxations, charge densities, electron localization functions (ELFs), density of states (DOSs), band structures, and band decomposed charge density were obtained to reveal the amphoteric behavior of Bi in Hg0.75Cd0.25Te. The bonding characteristics between Bi and host atoms were discussed by analyzing charge densities and ELFs. The influence of Bi impurity on the electronic structure of Bi-doped Hg0.75Cd0.25Te was also analyzed by the calculated DOSs, band structures, and the band decomposed charge density of the defect band. It has been demonstrated that Bi can show a typical amphoteric substitution effect of group V elements.  相似文献   

4.
The present study explores the structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2 using a pseudopotential plane-wave method in the framework of density functional theory within the generalized gradient approximation. The calculated lattice constants and internal coordinates are in very good agreement with the experimental findings. Independent single-crystal elastic constants as well as numerical estimations of the bulk modulus, the shear modulus, Young's modulus, Poisson's ratio, Pugh's indicator of brittle/ductile behaviour and the Debye temperature for the corresponding polycrystalline phase were obtained. The elastic anisotropy of BaIn2P2 was investigated using three different indexes. The calculated electronic band structure and the total and site-projected l-decomposed densities of states reveal that this compound is a direct narrow-band-gap semiconductor. Under the influence of hydrostatic pressure, the direct D–D band gap transforms into an indirect B-D band gap at 4.08 GPa, then into a B–Γ band gap at 10.56 GPa. Optical macroscopic constants, namely, the dielectric function, refractive index, extinction coefficient, reflectivity coefficient, absorption coefficient and energy-loss function, for polarized incident radiation along the [100], [010] and [001] directions were investigated.  相似文献   

5.
《Solid State Sciences》2012,14(8):1211-1220
We have performed a first principles study of structural, mechanical, electronic, and optical properties of orthorhombic Sb2S3 and Sb2Se3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, Debye temperature, and hardness have also been estimated in the present work. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valence electrons and the effective optical dielectric constant are calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

6.
The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary Al-Li intermetallics, Al3Li, AlLi, Al2Li3, and Al4Li9, are ana-lyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between Al and Li for all the Al-Li intermetallics. In partic-ular, in the Li-rich Al-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of Li. According to the computational single crystal elastic constants, all the four Al-Li intermetallic compounds considered here are mechani-cally stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary Al-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of Al-Li intermetallics decreases in a linear manner.  相似文献   

7.
采用基于密度泛函理论(DFT)框架下广义梯度近似(GGA)平面波超软赝势(PP-PW)方法, 计算了闪锌矿型MTe (M=Zn/Mg)的几何结构、弹性性质、电子结构和光学性质. 同时采用杂化密度泛函调准了带隙. 结果表明, 立方相ZnTe和MgTe均为直接带隙半导体材料. 所得晶格参数、弹性常数及体模量与实验数据基本吻合. 由弹性常数推导出ZnTe、MgTe的德拜温度分别为758、585 K. 研究了MTe的复介电函数、折射率、反射率和能量损失系数等光学性质, 并基于电子能带结构和态密度对光学性质进行了解释.  相似文献   

8.
The structural, electronic, mechanical and dynamical properties of new members of MAX family (Hf2XY, X=Al, Si, P and Y= B, C, N compounds) with Cr2AlC-type structure have been investigated by first-principles density functional plane-wave pseudopotential calculations within generalized gradient approximation. From calculated cohesive energies, all compounds are energetically stable. And, from calculated elastic constants and phonon dispersion curves, it is shown that all compounds are mechanically stable, while the boron including ones are dynamically unstable except for Hf2PB. At the same time, related mechanical properties such as bulk and shear moduli are calculated. For further mechanical characterization, hardnesses of the compounds are determined theoretically. It is observed from electronic structure calculations including band structure and partial density of states, all stable compounds are metallic. Additionally, bonding nature of the compounds are analyzed by using 3D and 2D electron density maps, Mulliken atomic charges and bond overlap populations.  相似文献   

9.
The electronic band structures for AgGaX(2) (X=S, Se, Te) chalcopyrites have been calculated using a pseudopotential total energy method. First-principles calculations of the linear and nonlinear optical properties are presented for these crystals, with the electronic band structures obtained from pseudopotential method as input. The theoretical refractive indices and nonlinear optical coefficients are in good agreement with available experimental values. The origin of the nonlinear optical effects is explained through real-space atom-cutting analysis. The contribution of the GaX(2) group (X=S, Se, Te) for second harmonic generation (SHG) effect is dominant while that of the cation Ag is negligible. In addition, the percentage contribution to the SHG coefficients from the different bonds increase with increase of the bond order.  相似文献   

10.
采用密度泛函方法对MX(M=Sc,Ti,V;X=C,N,O)固体的体相电子结构和力学性质进行了系统研究.计算结果表明,对于金属原子相同的同一系列化合物,氮化物具有最大的体模量;进一步的研究可知,随着外界压力的增大,化合物由NaCl构型向CsCl构型转变由易到难的顺序依次是氧化物、氮化物和碳化物.本文还首次用密度泛函方法系统地计算了各化合物的能带结构和态密度,并对该类型化合物的导电性能进行了探讨.  相似文献   

11.
The structural, elastic, electronic, and optical properties of cubic spinel MgIn2S4 and CdIn2S4 compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the total energy-strain technique, we have determined the full set of first-order elastic constants Cij and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young’s modulus, and Poisson’s ratio are calculated for polycrystalline XIn2S4 aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap (Г-Г) for MgIn2S4 and an indirect band gap (K-Г) for CdIn2S4. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function ε(ω), the refractive index n(ω), the reflectivity R(ω), and the energy loss function L(ω) were calculated for radiation up to 30 eV.  相似文献   

12.
The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.  相似文献   

13.
采用基于赝势平面波基组的密度泛函理论方法,研究具有黄铜矿结构的CuAlX2(X=S,Se,Te)晶体的电子结构,并预测了它们的线性和非线性光学性质.结果表明:这些化合物具有相似的能带结构,带隙随X原子从S→Se→Te依次减小.三种晶体的静态介电常数、静态折射率和静态倍频系数d36的变化情况与带隙的变化相反,随着X原子自S→Se→Te改变依次递增,但静态双折射率依次递减.该系列化合物的倍频效应主要来源于价带顶附近的占据能带向以Al和X原子的p电子态为主要成分的空带之间的跃迁.在三种晶体中,CuAlTe2除静态双折射率偏小外,其它光学性能要优于CuAlS2和CuAlSe2.  相似文献   

14.
The electronic structure and properties of polypyrrole (p-Pyr) based substituting by the group of pyrazine (Pyz) and their model compounds were studied by the density functional theory (DFT) at the B3LYP level with 6-31G* basis set. The bond length, the topological analyses and nucleus-independent chemical shifts (NICS) were analyzed and correlated with the electronic properties. The bond length of all compounds is reduced with the increase in the degree of polymerization, and the band gap of these compounds is decreased. The change of NICS shows that the conjugation degree in central section of the polymeric axis is stronger than that in outer section, and the structure of central part was close to quinoid structure in polymers. The theoretical results suggest that the band gap of p-Pyz (polymer of Pyz) (0.37 eV) is much smaller than the band gap of polypyrrole (1.84 eV). The narrow band gap, large HOMO and LUMO bandwidths and small effective masses make p-Pyz have a remarkable elevation of the conductivity, so it may be considered as a very good candidate for conducting material.  相似文献   

15.
The structural, electronic, optical, and vibrational properties of LiN(3) under high pressure have been studied using plane wave pseudopotentials within the generalized gradient approximation for the exchange and correlation functional. The calculated lattice parameters agree quite well with experiments. The calculated bulk modulus value is found to be 23.23 GPa, which is in good agreement with the experimental value of 20.5 GPa. Our calculations reproduce well the trends in high-pressure behavior of the structural parameters. The present results show that the compressibility of LiN(3) crystal is anisotropic and the crystallographic b-axis is more compressible when compared to a- and c-axes, which is also consistent with experiment. Elastic constants are predicted, which still awaits experimental confirmation. The computed elastic constants clearly show that LiN(3) is a mechanically stable system and the calculated elastic constants follow the order C(33) > C(11) > C(22), implying that the LiN(3) lattice is stiffer along the c-axis and relatively weaker along the b-axis. Under the application of pressure the magnitude of the electronic band gap value decreases, indicating that the system has the tendency to become semiconductor at high pressures. The optical properties such as refractive index, absorption spectra, and photoconductivity along the three crystallographic directions have been calculated at ambient as well as at high pressures. The calculated refractive index shows that the system is optically anisotropic and the anisotropy increases with an increase in pressure. The observed peaks in the absorption and photoconductivity spectra are found to shift toward the higher energy region as pressure increases, which implies that in LiN(3) decomposition is favored under pressure with the action of light. The vibrational frequencies for the internal and lattice modes of LiN(3) at ambient conditions as well as at high pressures are calculated from which we predict that the response of the lattice modes toward pressure is relatively high when compared to the internal modes of the azide ion.  相似文献   

16.
First-principles calculations are performed to investigate the structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3. The ground-state properties are in agreement with experimental data. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. A linear pressure dependence of the elastic stiffnesses is found. From the theoretical elastic constants, we have computed the elastic wave velocities along [100], [110] and [111] directions. The shear modulus, Young's modulus, Poisson's ratio, Lamé’s coefficients, average sound velocity and Debye temperature are estimated in the framework of the Voigt-Reuss-Hill approximation for ideal polycrystalline BaSnO3 aggregate. Using the sX-LDA for the exchange-correlation potential, the calculated indirect fundamental band gap value is in very good agreement with the measured one. The analysis of the site-projected l-decomposed density of states, charge transfer and charge density shows that the bonding is of ionic nature. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature effect on the lattice constant, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature is calculated.  相似文献   

17.
The structural, mechanical, electronic, and thermodynamic properties of pure W metal under different pressures have been investigated using the first-principles method. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that pure W metal is mechanically stable. Elastic properties such as the bulk modulus (B), shear modulus (G), Young's modulus (E), Poisson's ratio (ν), Cauchy pressure (C′), and anisotropy coefficients (A) are calculated by the Voigt-Reuss-Hill method. The results show that the pressure can improve the strength of pure tungsten and has little effect on the ductility. In addition, the total density of states as a function of pressure is analyzed. Thermodynamic properties such as the Debye temperature, phonon dispersion spectrum, free energy, entropy, enthalpy, and heat capacity are also discussed.  相似文献   

18.
The predicted structures and electronic properties of CeO(2) and Ce(2)O(3) have been studied using conventional and hybrid density functional theory. The lattice constant and bulk modulus for CeO(2) from local (LSDA) functionals are in good agreement with experiment, while the lattice parameter from a generalized gradient approximation (GGA) is too long. This situation is reversed for Ce(2)O(3), where the LSDA lattice constant is much too short, while the GGA result is in reasonable agreement with experiment. Significantly, the screened hybrid HSE functional gives excellent agreement with experimental lattice constants for both CeO(2) and Ce(2)O(3). All methods give insulating ground states for CeO(2) with gaps for the 4f band lying between 1.7 eV (LSDA) and 3.3 eV (HSE) and 6-8 eV for the conduction band. For Ce(2)O(3) the local and GGA functionals predict a semimetallic ground state with small (0-0.3 eV) band gap but weak ferromagnetic coupling between the Ce(+3) centers. By contrast, the HSE functional gives an insulating ground state with a band gap of 3.2 eV and antiferromagnetic coupling. Overall, the hybrid HSE functional gives a consistent picture of both the structural and electronic properties of CeO(2) and Ce(2)O(3) while treating the 4f band consistently in both oxides.  相似文献   

19.
Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-linked carbazole trimers, two conjugated oligomers with different linkages of carbazole, were studied by the density functional theory with Becke-Lee-Young-Parr composite exchange correlation functional (B3LYP). The absorption spectra of these compounds were also investigated by time-dependent density functional theory (TD-DFT) with 6-31G* basis set. The calculated results indicated that the HOMO and LUMO of the 2,7- and 3,6-linked carbazole trimers are both slightly destabilized on going from methyl substitution to sec-butyl substitution. Both IP and EA exhibit their good hole-transporting but poor electron- accepting ability. The presence of alkyl groups on the nitrogen atoms does not affect the intra-chain electronic delocalization along the molecular frame. Thus no significant effect on the band gap and absorption spectra of compounds has been found.  相似文献   

20.
We have made an extensive theoretical study of the electronic, linear, and nonlinear optical properties of the III-V indium compound semiconductors InX (X=P, As, and Sb) with the use of full potential linear augmented plane wave method. The results for the band structure, density of states, and the frequency-dependent linear and nonlinear optical responses are presented here and compared with available experimental data. Good agreement is found. Our calculations show that these compounds have similar electronic structures. The valence band maximum and the conduction band minimum are located at Gamma resulting in a direct energy gap. The energy band gap of these compounds decreases when P is replaced by As and As by Sb. This can be attributed to the increase in bandwidth of the conduction bands. The linear and nonlinear optical spectra are analyzed and the origin of some of the peaks in the spectra is discussed in terms of the calculated electronic structure. The calculated linear optical properties show very good agreement with the available experimental data. We find that the intra-and interband contributions of the second-harmonic generation increase when moving from P to As to Sb. The smaller energy band gap compounds have larger values of chi(123) ((2))(0) in agreement with the experimental measurements and other theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号