首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Block copolymer micelles find application in many fields as nanocarriers, especially in drug delivery. We report herein that specific interactions between hydrophobic guest molecules and core-forming segments can significantly improve the loading capacity of polymeric micelles. High loading capacities (>100% weight/weight of polymer (w/wp)) were systematically observed for the encapsulation of probes containing weak carboxylic acid groups by micellar nanoparticles having poly[2-(dialkylamino)ethyl methacrylate] cores (i.e., particles whose cargo space exhibits antagonist weak base functions), as demonstrated by the incorporation of indomethacin (IND), ibuprofen (IBPF), and trans-3,5-bis(trifluoromethyl)cinnamic acid (F-CIN) into either poly(ethylene oxide)-b-poly[2-(diisopropylamino)ethyl methacrylate] (PEO-b-PDPA) or poly(glycerol monomethacrylate)-b-PDPA (PG2MA-b-PDPA) micelles. The esterification of IND yielding to a nonionizable IND ethyl ester derivative (IND-Et) caused an abrupt decrease in the micellar loading capacity down to 10-15% w/wp. Similar results were also obtained when IND was combined with nonionizable block copolymers such as PEO-b-polycaprolactone (PEO-b-PCL) and PEO-b-poly(glycidyl methacrylate) (PEO-b-PGMA). The existence of acid-base interactions between the solubilizate and the weak polybase block forming the micelle core was confirmed by 1H NMR measurements. However, the incorporation of high numbers of hydrophobic guest molecules inside polymeric micelles can provoke not only an increase in the hydrodynamic size (2RH) of the objects but also a substantial change in the morphology (transition from spheres to cylinders). The application of the Higuchi model showed that the probe release followed a diffusion-controlled mechanism, and diffusion coefficients (D) on the order of 10-18-10-17 cm2/s were determined for IND release from 1.0 mg/mL PEO113-b-PDPA50 + 100% w/wp IND. Probe release from micelles with weak polybase-based cores can also be triggered by changes in the solution pH.  相似文献   

2.
Materials that utilize the micropatterned structure of a mesoporous silica film to successfully load and release cargo using a thermal sensitive polymer are presented in this paper. Films with pore sizes of ~2 and ~5 nm aligned in the pulling direction were synthesized using evaporation induced self-assembly techniques. The pores are exposed using a new method of stamping micropatterns without the use hydrofluoric acid. A well studied temperature dependent polymer [poly(N-isopropylacrylamide-co-acrylamide)] was grafted onto the surface of these films to act as a temperature activated gatekeeper. Below the lower critical solution temperature (LCST) the polymer is erect and can block the pore openings, trapping cargo inside the pores. When the temperature is above the LCST the polymer collapses and unblocks the pores, allowing cargo to escape. The loading capacities as well as the reusability of these films were studied.  相似文献   

3.
A plasmonic core–shell gold nanostar/zeolitic‐imidazolate‐framework‐8 (ZIF‐8) nanocomposite was developed for the thermoplasmonic‐driven release of encapsulated active molecules inside living cells. The nanocomposites were loaded, as a proof of concept, with bisbenzimide molecules as functional cargo and wrapped with an amphiphilic polymer that prevents ZIF‐8 degradation and bisbenzimide leaking in aqueous media or inside living cells. The demonstrated molecule‐release mechanism relies on the use of near‐IR light coupled to the plasmonic absorption of the core gold nanostars, which creates local temperature gradients and thus, bisbenzimide thermodiffusion. Confocal microscopy and surface‐enhanced Raman spectroscopy (SERS) were used to demonstrate bisbenzimide loading/leaking and near‐IR‐triggered cargo release inside cells, thereby leading to DNA staining.  相似文献   

4.
Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Herein, we show that gigahertz acoustic streaming generated by a nanoelectromechanical resonator can control the loading and release of cargo into and from vesicles. Polymer‐shelled vesicles showed loading and release of molecules both in solution and on a solid substrate. We observed deformation of individual giant unilamellar vesicles and propose that the shear stress generated by gigahertz acoustic streaming induces the formation of transient nanopores, with diameters on the order of 100 nm, in the vesicle membranes. This provides a non‐invasive method to control material exchange across membranes of different types of vesicles, which could allow site‐specific release of therapeutics and controlled loading into cells, as well as tunable microreactors.  相似文献   

5.
Researches on cargo delivery systems have received burgeoning attention and advanced rapidly. For synthetic nanodevices, polymer nanoassemblies and their inorganic‐organic hybrid materials, especially smart mesoporous silica nanoparticle (MSN)‐polymer hybrids (e. g., MSN@PGMAs), have attracted increasing attention in recent years. Their superior characteristics and unique features such as dynamic transition of morphology endow them the ability to efficiently entrap cargo molecules and undergo smart cargo delivery and release in response to various external stimuli. In this Personal Account, we present our recent research progress in the construction of cargo delivery systems based on polymers, poly(glycidyl methacrylate) (PGMA) and its derivatives in particular, ranging from polymer nanoparticles, reverse micelles, to vesicles and reverse vesicles, and their performance in the delivery and controlled release of model molecules and therapeutic agents. Significantly, MSN‐PGMA hybrid nanoassemblies (MSN@PGMAs), constructed with the aid of atom transfer radical polymerization, host‐guest interactions, or layer‐by‐layer self‐assembly techniques, and their potential bio‐related applications and anti‐bacterial applications as new nanocarriers are reviewed. Finally, the prospects and challenges of such nanoplatforms are also discussed.  相似文献   

6.
We report the synthesis of chemically asymmetric silica nanobottles (NBs) with a hydrophobic exterior surface (capped with 3‐chloropropyl groups) and a hydrophilic interior surface for spatially selective cargo loading, and for application as nanoreactors and nanomotors. The silica NBs, which have a “flask bottle” shape with an average diameter of 350 nm and an opening of ca. 100 nm, are prepared by anisotropic sol–gel growth in a water/n‐pentanol emulsion. Due to their chemically asymmetric properties, nanoparticles (NPs) with hydrophilic or hydrophobic surface properties can be selectively loaded inside the NBs or on the outside of the NBs, respectively. A high‐performance nanomotor is constructed by selectively loading catalytically active hydrophilic Pt NPs inside the NBs. It is also demonstrated that these NBs can be used as vessels for various reactions, such as the in situ synthesis of Au NPs, and using Au NP‐loaded NBs as nanoreactors for catalytic reactions.  相似文献   

7.
Wang J 《Lab on a chip》2012,12(11):1944-1950
This review article discusses the use of synthetic catalytic nano motors for cargo manipulations and for developing miniaturized lab-on-chip systems based on autonomous transport. The ability of using chemically-powered artificial nanomotors to capture, transport and release therapeutic payloads or nanostructured biomaterials represents one of the next major prospects for nanomotor development. The increased cargo-towing force of such self-propelled nanomotors, along with their precise motion control within microchannel networks, versatility and facile functionalization, pave the way to new integrated functional lab-on-a-chip powered by active transport and perform a series of tasks. Such use of cargo-towing artificial nanomotors has been inspired by on-chip kinesin molecular shuttles. Functionalized nano/microscale motors can thus be used to pick a selected nano/microscale chemical or biological payload target at the right place, transport and deliver them to a target location in a timely manner. Key challenges for using synthetic nanomachines for driving transport processes along microchannel networks are discussed, including loading and unloading of cargo and precise motion control, along with recent examples of related cargo manipulation processes and guided transport in lab-on-a-chip formats. The exciting research area of cargo-carrying catalytic man-made nanomachines is expected to grow rapidly, to lead to new lab-on-a-chip formats and to provide a wide range of future microchip opportunities.  相似文献   

8.
In this tutorial review we describe the recent progress on catalytic microtubular engines fabricated by rolled-up nanotech on polymers. We summarize the technical aspects of the technology and the basic principles that cause the catalytic microengines to self-propel in fuel solutions. The control over speed, directionality and interactions of the microengines to perform tasks such as cargo transportation is also discussed. We compare this technology to other fabrication techniques of catalytic micro-/nanomotors and outline challenges and opportunities for such engines in future studies. Since rolled-up nanotech on polymers can easily integrate almost any type of inorganic material, huge potential and advanced performance such as high speed, cargo delivery, motion control, and dynamic assembly are foreseen--ultimately promising a practical way to construct versatile and intelligent catalytic tubular microrobots.  相似文献   

9.
Thin‐walled, hollow carbon nanospheres with a hydrophobic interior and good water dispersability can be synthesized in two steps: First, metal nanoparticles, coated with a few layers of graphene‐like carbon, are selectively modified on the outside with a covalently attached hydrophilic polymer. Second, the metal core is removed at elevated temperature treatment with acid, leaving a well‐defined carbon‐based hydrophobic cavity. Loading experiments with the dye rhodamine B and doxorubicin confirmed the filling and release of a cargo and adjustment of a dynamic equilibrium (cargo‐loaded versus release). Rhodamine B preferably accumulates in the interior of the bubbles. Filled nanobubbles allowed constant dye release into pure water. Studies of the concentration‐dependent loading and release show an unusual hysteresis.  相似文献   

10.
A novel concept of an iridium‐based bubble‐propelled Janus‐particle‐type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m2 g?1. The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium‐doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble‐propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.  相似文献   

11.
Protein cage nanoparticles (PCNs) are attractive platforms for developing functional nanomaterials using biomimetic approaches for functionalization and cargo encapsulation. Many strategies have been employed to direct the loading of molecular cargos inside a wide range of PCN architectures. Here we demonstrate the exploitation of a metal-ligand coordination bond with respect to the direct packing of guest molecules on the interior interface of a virus-like PCN derived from Salmonella typhimurium bacteriophage P22. The incorporation of these guest species was assessed using mass spectrometry, multiangle laser light scattering, and analytical ultracentrifugation. In addition to small-molecule encapsulation, this approach was also effective for the directed synthesis of a large macromolecular coordination polymer packed inside of the P22 capsid and initiated on the interior surface. A wide range of metals and ligands with different thermodynamic affinities and kinetic stabilities are potentially available for this approach, highlighting the potential for metal-ligand coordination chemistry to direct the site-specific incorporation of cargo molecules for a variety of applications.  相似文献   

12.
镍负载量对乙醇水蒸气重整制氢催化性能和催化剂的影响   总被引:2,自引:0,他引:2  
采用稳态实验对镍负载量对Ni/MgO催化剂在乙醇水蒸气重整反应的影响进行了研究。结果表明,在101.3kPa下,镍负载量越高,催化剂的活性越高。对于催化剂的选择性,存在一个最佳镍负载量为10%Ni/MgO。按选择性从大到小排序,不同镍负载量的催化剂为:10Ni/MgO>15Ni/MgO>12.5Ni/MgO>7.5Ni/MgO≈5Ni/MgO。热分析表明,焙烧过程中不同镍负载量的催化剂镍前体与载体前体之间发生的相互作用不同。XRD和TPR 表征结果显示,催化剂的晶体结构和还原特性也与催化剂上镍的负载量有关。焙烧过程中样品10Ni/MgO上镍前体与载体前体发生了两种相互作用, 并且其氧化态与其他催化剂相比具有特殊的结构和还原性。说明催化剂的选择性不仅受活性相Ni的影响而且受Ni活性相周围环境的影响。  相似文献   

13.
The elegant geometry of viruses has inspired bio-engineers to synthetically explore the self-assembly of polyhedral capsids employed to protect new cargo or change an enzymatic microenvironment. Recently, Yang and co-workers used DNA nanotechnology to revisit the icosahedral capsid structure of the phiX174 bacteriophage and reloaded the original viral genome as cargo into their fully synthetic architecture. Surprisingly, when using a favorable combination of structural rigidity and dynamic multivalent cargo entrapment, the synthetic particles were able to infect non-competent bacterial cells and produce the original phiX174 bacteriophage. This work presents an exciting new direction of DNA nanotech for bio-engineering applications which involve bacterial interactions.  相似文献   

14.
We describe herein a Toll‐like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic–polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK‐BR‐3 breast carcinoma cells. Our results show that poly(I:C)‐conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA–TLR3 interaction. Such interaction also triggered apoptotic pathways in SK‐BR‐3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles′ mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent.  相似文献   

15.
We demonstrate the dispersion free digital transport of emulsion droplets and biological cells in an aqueous solution using paramagnetic colloidal particles above a uniaxial magnetic garnet film. Magnetic modulations above the stripe domain pattern induce a step-wise transport of paramagnetic particles dispersed in water and deposited on the surface of the film. Capillary or hydrodynamic interactions are then used to couple the cargo to the paramagnetic beads. We achieve full control of the cargo motion up to velocities in the 100 microm/s range.  相似文献   

16.
Molecular interlocked systems with mechanically trapped components can serve as versatile building blocks for dynamic nanostructures. Here we report the synthesis of unprecedented double‐stranded (ds) DNA [2]‐ and [3]rotaxanes with two distinct stations for the hybridization of the macrocycles on the axle. In the [3]rotaxane, the release and migration of the “shuttle ring” mobilizes a second macrocycle in a highly controlled fashion. Different oligodeoxynucleotides (ODNs) employed as inputs induce structural changes in the system that can be detected as diverse logically gated output signals. We also designed nonsymmetrical [2]rotaxanes which allow unambiguous localization of the position of the macrocycle by use of atomic force microscopy (AFM). Either light irradiation or the use of fuel ODNs can drive the threaded macrocycle to the desired station in these shuttle systems. The DNA nanostructures introduced here constitute promising prototypes for logically gated cargo delivery and release shuttles.  相似文献   

17.
张帅  秦博  徐江飞  张希 《化学通报》2020,83(7):578-587
超分子聚合物诞生于高分子化学与超分子化学的交叉融合,一般是指单体间通过非共价键作用连接形成的聚合物,并在溶液或体相中表现出类似聚合物的性质。目前超分子聚合物一般通过均相溶液聚合制备得到,但溶液中的超分子聚合是一个自发的组装过程,具有浓度依赖性,组装过程不易可控。为解决此问题,研究人员可以将超分子聚合从均相溶液转移到界面,在界面上可控地制备超分子聚合物。通过界面聚合制备超分子聚合物具有一些独特的优势,如可以制备得到分子量更高的超分子聚合物,易于制备一些缺陷少、面积大、有序的二维超分子聚合物等。本文基于在液-液、气-液和固-液三种界面上制备超分子聚合物的一些代表性工作,介绍了界面超分子聚合方法和应用,并展望其未来发展。  相似文献   

18.
Korten T  Diez S 《Lab on a chip》2008,8(9):1441-1447
Motor-driven cytoskeletal filaments are versatile transport platforms for nanosized cargo in molecular sorting and nano-assembly devices. However, because cargo and motors share the filament lattice as a common substrate for their activity, it is important to understand the influence of cargo-loading on transport properties. By performing single-molecule stepping assays on biotinylated microtubules we found that individual kinesin-1 motors frequently stopped upon encounters with attached streptavidin molecules. Consequently, we attribute the deceleration of cargo-laden microtubules in gliding assays to an obstruction of kinesin-1 paths on the microtubule lattice rather than to 'frictional' cargo-surface interactions. We propose to apply this obstacle-caused slow-down of gliding microtubules in a novel molecular detection scheme: Using a mixture of two distinct microtubule populations that each bind a different kind of protein, the presence of these proteins can be detected via speed changes in the respective microtubule populations.  相似文献   

19.
Mesoporous organosilica as drug delivery carriers capable of achieving improved cargo release, enhanced biodegradation, and direct imaging with prolonged circulation time and tracking cargo distribution is highly in demand for biomedical applications. Herein, we report a ditelluride-bridged mesoporous organosilica nanoparticle (DTeMSN)/polyethylene glycol-curcumin (PEG-CCM) nanocomposite through coassembly with oxidative/redox and self-fluorescent response. Tellurium is introduced into the silica framework for the first time as a drug delivery vehicle. In this case, the DTeMSNs as an inner core enable disassembly under oxidative and redox conditions via the cleavage of ditelluride bond, facilitating the drug release of doxorubicin (DOX) in a matrix degradation controlled manner. Through the systematical comparison of diselenide-bridged MSNs and DTeMSNs, DTeMSNs exhibit remarkable advantages in loading capacity, drug release, and degradation behavior, thereby significantly affecting the cytotoxicity and antitumor efficacy. The self-fluorescent response of PEG-CCM shell coated on the surface of DTeMSNs can real-timely track the cellular uptake, DOX release, and biodistribution owing to the intrinsic and stable fluorescence of CCM. Moreover, PEG-CCM could prolong circulation time, provide preferable drug accumulation in tumors, and increase antitumor efficacy of DOX-loaded DTeMSNs. Our findings are likely to enrich the family of organosilica that served as fluorescence-guided drug delivery carriers.  相似文献   

20.
Over the last two decades the layer-by-layer (LbL) assembly technique has become a highly versatile platform for the synthesis of nanoengineered thin films and particles. The widespread need for highly functional and responsive materials for applications in biomedicine-such as drug and gene delivery-has recently led to considerable efforts in the assembly of LbL materials, particularly films that can be subsequently stabilised and functionalised through a range of chemistries. In this tutorial review, recent developments in hydrogen-bonded LbL-assembled materials will be discussed, focusing on the design of materials with enhanced stimuli-responsive characteristics. Emphasis will be given to materials engineered for biomedical applications, specifically films/capsules that afford controlled loading and release of therapeutic cargo for application in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号